Manufacturing Technology 2025, 25(6):788-793 | DOI: 10.21062/mft.2025.079

Formation of TiO2 Hollow Nanoparticles Studied by in Situ TEM

Nikoleta Štaffenová ORCID..., Lucia Bajtošová ORCID..., Elena Chochoľaková ORCID..., Jan Hanuš ORCID..., Miroslav Cieslar ORCID...
Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague, Czech Republic

Hollow TiO₂ architectures are attractive for catalysis and sensing but typically produced by wet-chemical templating and sub-micron sizes. Here we demonstrate a dry, template-free route to nanoscale hollow shells by combining DC magnetron sputtering with in situ TEM heating. Heating to 900 °C produces sub-50 nm TiO₂ hollow shells with ~20 nm compact walls via oxidation-driven Kirkendall hollowing. The oxide evolves from amorphous at low temperature to anatase locally (~500 °C) and then to a rutile/brookite mixture by ~600 °C. The hollow architecture withstands a temperature of 900 °C without measurable sintering. Beam-off regions and ex-situ air annealing show the same hollowing and phase evolution, confirming a thermally driven, not beam-induced, transformation reproducible in air.

Keywords: Hollow TiO₂, Rutile/brookite, Magnetron sputtering, in situ TEM, Kirkendall effect
Grants and funding:

We acknowledge the funding and support from the Czech Science Foundation, grant number 22-22572S.

Received: August 29, 2025; Revised: December 7, 2025; Accepted: December 10, 2025; Prepublished online: December 15, 2025; Published: December 23, 2025  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Štaffenová N, Bajtošová L, Chochoľaková E, Hanuš J, Cieslar M. Formation of TiO2 Hollow Nanoparticles Studied by in Situ TEM. Manufacturing Technology. 2025;25(6):788-793. doi: 10.21062/mft.2025.079.
Download citation

References

  1. WANG, D.; SONG, C.; LIN, Y.; HU, Z. (2006). Preparation and characterization of TiO2 hollow spheres. In: Materials Letters, Vol. 60, No. 1, pp. 77-80. Go to original source...
  2. CARUSO, F. (2000). Hollow capsule processing through colloidal templating and self-assembly. In: Chemis-try - A European Journal, Vol. 6, No. 3, pp. 413-419. Go to original source...
  3. ZHONG, Z.; YIN, Y.; GATES, B.; XIA, Y. (2000). Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. In: Advanced Materials, Vol. 12, No. 3, pp. 206-209. Go to original source...
  4. ŠULCOVÁ, J., PAPUČOVÁ, I., PAGÁČOVÁ, J., DUBEC, A., FERIANCOVÁ, A., SUKEĽ, M. DEDINSKÝ PETER (2024). The Effect of TiO2 Layers on the Surface Properties of Materials. In: Manufacturing Technology Journal, Vol. 24, No. 2, pp. 272-278. Go to original source...
  5. COULTER, K.E.; SAULT, A.G. (1995). Effects of activation on the surface properties of silica-supported cobalt catalysts. In: Journal of Catalysis, Vol. 154, No. 1, pp. 56-64. Go to original source...
  6. WANG, A., ZHANG, H., LI, X., ZHANG, X., WANG, W. (2023). Method for Controlling Production Cost of Nano Ti-based Materials Based on DMAIC. In: Manufacturing Technology, Vol. 23, No. 3, pp. 354-365. Go to original source...
  7. ESKANDARLOO, H.; ZAFERANI, M.; KIERULF, A.; ABBASPOURRAD, A. (2018). Shape-controlled fabrication of TiO2 hollow shells toward photocatalytic application. In: Applied Catalysis B: Environmental, Vol. 227, pp. 519-529. Go to original source...
  8. CHANDRA, M.; PRADHAN, D. (2020). Engineering the morphology and crystal phase of 3D hierarchical TiO2 with excellent photochemical and photoelectrochemical solar water splitting. In: ChemSusChem, Vol. 13, pp. 3005-3016. Go to original source...
  9. KAVAN, L.; GRÄTZEL, M.; GILBERT, S.E.; KLEMENZ, C.; SCHEEL, H.J. (1996). Electrochemical and photoelectrochemical investigation of single-crystal anatase. In: Journal of the American Chemical Society, Vol. 118, No. 28, pp. 6716-6723. Go to original source...
  10. PFEIFER, V.; ERHART, P.; LI, S.; RACHUT, K.; MORASCH, J.; BRÖTZ, J.; RECKERS, P.; MAYER, T.; RÜHLE, S.; ZABAN, A.; MORA-SERÓ, I.; BISQUERT, J.; JAEGERMANN, W.; KLEIN, A. (2013). Energy band alignment between anatase and rutile TiO2. In: Journal of Physical Chemistry Letters, Vol. 4, No. 23, pp. 4182-4187. Go to original source...
  11. HORKÝ, R., KUŚMIERCZAK, S., NÁPRSTKOVÁ, N., KAMBAROVÁ, I. (2024). Effect of Heat Treatment and Corrosion Load on the Microstructure of the Ti6Al4V Alloy. In: Manufacturing Technology, Vol. 24, No. 6, pp. 914-928. Go to original source...
  12. IMHOF, A.; PINE, D.J. (2001). Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. In: Langmuir, Vol. 17, pp. 3579-3585. Go to original source...
  13. BAO, Y.; et al. (2018). Sol-gel-controlled synthesis of hollow TiO2 spheres and their photocatalytic properties. In: Materials Letters, Vol. 222, pp. 266-269. Go to original source...
  14. HANPRASOPWATTANA, A.; et al. (1996). Titania coatings on monodisperse silica spheres… In: Lang-muir, Vol. 12, pp. 3173-3179. Go to original source...
  15. MAHONEY, L.; KOODALI, R.T. (2014). Versatility of evaporation-induced self-assembly (EISA) method for preparation of mesoporous TiO2 for energy and environmental applications. In: Materials, Vol. 7, pp. 2697-2746. Go to original source...
  16. WANG, Y.; et al. (2008). Preparation of TiO2 hollow microspheres by the reverse microemulsion method. In: Materials Letters, Vol. 62, pp. 3801-3804. Go to original source...
  17. CHEN, T.; et al. (2007). Organic-inorganic hybrid hollow spheres prepared from a TiO2 -stabilized Picker-ing emulsion polymerization. In: Advanced Materials, Vol. 19, pp. 4537-4541. Go to original source...
  18. OKANOVIĆ, V.; et al. (2004). Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis. In: Materials Science and Engineering B, Vol. 112, pp. 173-178. Go to original source...
  19. LONG, L.; et al. (2015). Ammonia-cation-assisted oxygen bubble template for hollow TiO2 nanospheres. In: RSC Advances, Vol. 5, pp. 112830-112836. Go to original source...
  20. YANG, H.G.; ZENG, H.C. (2004). Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. In: Journal of Physical Chemistry B, Vol. 108, No. 11, pp. 3492-3495. Go to original source...
  21. LIANG, J.; HAN, X.; LI, Y.; YE, K.; HOU, C.; YU, K. (2015). Fabrication of TiO2 hollow nanocrystals through the nanoscale Kirkendall effect for lithium-ion batteries and photocatalysis. In: New Journal of Chemistry, Vol. 39, No. 4, pp. 3145-3149. Go to original source...
  22. WANG, L.; et al. (2002). Fabrication of controllable ultrathin titania hollow shells by LbL of titania nanosheets on polymer templates. In: Chemistry of Materials, Vol. 14, pp. 4827-4832. Go to original source...
  23. LEE, W.-J.; HON, M.-H.; CHUNG, Y.-W.; LEE, J.-H. (2011). A three-dimensional nanostructure consisting of hollow TiO2 spheres fabricated by template-assisted atomic layer deposition. In: Japanese Journal of Applied Physics, Vol. 50, No. 6GH06. Go to original source...
  24. TANG, Y.; YANG, L.; CHEN, J.; QIU, Z. (2010). Facile fabrication of hierarchical hollow microspheres assembled by titanate nanotubes. In: Langmuir, Vol. 26, No. 12, pp. 9722-9725. Go to original source...
  25. ZHANG, J.; CHOI, S.-W.; KIM, S.-S. (2011). Micro- and nano-scale hollow TiO2 fibers by coaxial electro-spinning. In: Journal of Solid State Chemistry, Vol. 184, pp. 3008-3013. Go to original source...
  26. YU, K.; LING, M.; LIANG, J.; LIANG, C. (2019). Formation of TiO2 hollow spheres through nanoscale Kirkendall effect and their lithium storage and photocatalytic properties. In: Chemical Physics, Vol. 517, pp. 222-227. Go to original source...
  27. LI, X.; LI, M.; LIANG, J.; WANG, X.; YU, K. (2016). Growth mechanism of hollow TiO2(B) nanocrystals as powerful application in lithium-ion batteries. In: Journal of Alloys and Compounds, Vol. 681, pp. 471-476. Go to original source...
  28. ZURMÜHL, C.; POPESCU, R.; GERTHSEN, D.; FELDMANN, C. (2011). Microemulsion-based synthesis of nanoscale TiO2 hollow spheres. In: Solid State Sciences, Vol. 13, No. 8, pp. 1505-1509. Go to original source...
  29. KOBATA, A.; KUSAKABE, K.; MOROOKA, S. (1991). Growth and transformation of TiO2 crystallites in aerosol reactor. In: AIChE Journal, Vol. 37, No. 3, pp. 347-359. Go to original source...
  30. BUESSER, B.; GRÖHN, A. J.; PRATSINIS, S. E. (2011). Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics. In: Journal of Physical Chemistry C, Vol. 115, No. 22, pp. 11030-11035. Go to original source...
  31. YANG, Z.; YANG, N.; PILENI, M.-P. (2015). Nano Kirkendall effect related to nanocrystallinity of metal nanocrystals: Influence of the outward and inward atomic diffusion on the final nanoparticle structure. In: Journal of Physical Chemistry C, Vol. 119, No. 39, pp. 22249-22260. Go to original source...
  32. DENNIS, P.F.; FREER, R. (1993). Oxygen self-diffusion in rutile under hydrothermal conditions. In: Journal of Materials Science, Vol. 28, No. 18, pp. 4804-4810. Go to original source...
  33. LUNDY, T.S.; COGHLAN, W.A. (1973). Cation self diffusion in rutile. In: Journal de Physique Colloques, Vol. 34, No. C9, pp. 299-302. (Proceedings of the European Physical Society Topical Conference Lattice Defects in Ionic Crystals, Marseille-Luminy, France, July 2-6, 1973). Go to original source...
  34. XU, T.; ZHANG, H.; YE, M.; ZHU, Y.; YUAN, D.; LI, W.; ZHOU, Y.; SUN, L. (2022). Controllable fabrication of hollow In2O3 nanoparticles by electron beam irradiation. In: Nanoscale, Vol. 14, pp. 12569-12573. Go to original source...
  35. ZHOU, Z.; YIN, H.; ZHAO, Y.; ZHANG, J.; LI, Y.; YUAN, J.; TANG, J.; WANG, F. (2021). Synthesis of magnetic α-Fe2O3/rutile TiO2 hollow spheres for visible-light photocatalytic activity. In: Catalysts, Vol. 11, No. 3, Art. 396. Go to original source...
  36. JIAO, S.; LIAN, G.; JING, L.; XU, Z.; WANG, Q.; CUI, D.; WONG, C.-P. (2018). Sn-doped rutile TiO2 hollow nanocrystals with enhanced lithium-ion batteries performance. In: ACS Omega, Vol. 3, No. 1, pp. 1329-1337. Go to original source...
  37. WANG, H.; MIYAUCHI, M.; ISHIKAWA, Y.; PYATENKO, A.; KOSHIZAKI, N.; LI, Y.; LI, L.; LI, X.; BANDO, Y.; GOLBERG, D. (2011). Single-crystalline rutile TiO2 hollow spheres: Room-temperature syn-thesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. In: Journal of the American Chemical Society, Vol. 133, No. 47, pp. 19102-19109. Go to original source...
  38. JUSTH, N.; BAKOS, L. P.; HERNÁDI, K.; KISS, G.; RÉTI, B.; ERDÉLYI, Z.; PARDITKA, B.; SZILÁGYI, I. M. (2017). Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition. In: Scientific Reports, Vol. 7, Article 4337. Go to original source...
  39. XU, H.; ZHANG, L.Z. (2009). Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. In: Journal of Physical Chemistry C, Vol. 113, No. 5, pp. 1785-1790. Go to original source...
  40. TIAN, X.; CUI, X.; LAI, T.; REN, J.; YANG, Z.; XIAO, M.; WANG, B.; XIAO, X.; WANG, Y. (2021). Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. In: Nano Materials Science, Vol. 3, No. 4, pp. 390-403. Go to original source...
  41. HANAOR, D.A.H.; SORRELL, C.C. (2011). Review of the anatase to rutile phase transformation. In: Journal of Materials Science, Vol. 46, pp. 855-874. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.