Manufacturing Technology 2025, 25(4):521-530 | DOI: 10.21062/mft.2025.057
Surface Morphology and Ablation Efficiency in DUV Ultrafast Laser Micromachining of Fused Silica
- Institute of Manufacturing Technology, FME, Brno University of Technology; Technická 2896/2, 61669 Brno, Czech Republic
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
Fused silica is a key material for high-precision applications such as micro-optics and microfluidics. One route to improving direct laser writing (DLW) of fused silica is the use of shorter laser wavelengths, which enable tighter focusing and enhanced absorption. In this study, the influence of process parameters on surface quality and material removal during DLW using a deep ultraviolet (DUV) ultrafast laser (257 nm, 1 ps) was investigated. A full-factorial design of the experiment was used to identify conditions that optimise both surface quality and ablation efficiency. Surface roughness as low as Sa ≈ 200 nm and material removal rates up to 0.048 mm³∙min-1 were achieved. Conditions that led to surface degradation were also identified. Finally, the optimised parameters were applied to fabricate a microfluidic demonstrator. These results confirm that DUV ultrafast DLW is a powerful technique for fabricating high-fidelity features in fused silica with exceptional precision and quality that can be used for micro-optics or microfluidics devices.
Keywords: Ultrafast, Laser, Fused silica, Micro-processing, Microfluidic
Grants and funding:
This work was co-funded by the European Union and the state budget of the Czech Republic under the project LasApp CZ.02.01.01/00/22_008/0004573. The institutional support RVO:68081731 is gratefully acknowledged
This contribution was created within the framework of project TN02000020 entitled Center of Advanced Electron and Photon Optics and is co-financed with the state support of the Technology Agency of the Czech Republic within the Program for the Support of Applied Research, Experimental Development and Innovation of the National Center of Competence
This research study was supported by the grant “Comprehensive technology for interdisciplinary work with advanced materials, emphasizing their multidisciplinary applications.”, FSI-S-25-8787
Received: July 22, 2025; Revised: September 22, 2025; Accepted: October 13, 2025; Prepublished online: November 6, 2025; Published: November 11, 2025 Show citation
References
- HWANG, J., CHO, Y. H., PARK, M. S., KIM, B. H. (2019). Microchannel Fabrication on Glass Materials for Microfluidic Devices. In: International Journal of Precision Engineering and Manufacturing, Vol. 20, No. 3. pp. 479-495. ISSN 2005-4602. DOI: 10.1007/s12541-019-00103-2.
Go to original source... - CHOI, H.-K., AHSAN, Md. S., YOO, D., SOHN, I.-B., NOH, Y.-C., KIM, J.-T., JUNG, D., KIM, J.-H., KANG, H.-M. (2015). Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique. In: Optics & Laser Technology, Vol. 75. pp. 63-70. ISSN 0030-3992. DOI: 10.1016/j.optlastec.2015.05.022.
Go to original source... - LEE, P. A., LEE, U. S., SIM, D. B., KIM, B. H. (2023). Microfluidic Chip Fabrication of Fused Silica Using Microgrinding. In: Micromachines, Vol. 14, No. 1. pp. 96. Multidisciplinary Digital Publishing Institute. ISSN 2072-666X. DOI: 10.3390/mi14010096.
Go to original source... - PARK, J. H., LEE, N.-E., LEE, J., PARK, J. S., PARK, H. D. (2005). Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas. In: Microelectronic Engineering, Vol. 82, No. 2. pp. 119-128. ISSN 0167-9317. DOI: 10.1016/j.mee.2005.07.006.
Go to original source... - KONSTANTINOVA, T. G., ANDRONIC, M. M., BAKLYKOV, D. A., STUKALOVA, V. E., EZENKOVA, D. A., ZIKIY, E. V., BASHINOVA, M. V., SOLOVEV, A. A., LOTKOV, E. S., RYZHIKOV, I. A., RODIONOV, I. A. (2023). Deep multilevel wet etching of fused silica glass micro-structures in BOE solution. In: Scientific Reports, Vol. 13, No. 1. pp. 5228. Nature Publishing Group. ISSN 2045-2322. DOI: 10.1038/s41598-023-32503-w.
Go to original source... - CRESPI, A., OSELLAME, R., BRAGHERI, F. (2019). Femtosecond-laser-written optofluidics in alumino-borosilicate glass. In: Optical Materials: X, Vol. 4. pp. 100042. ISSN 2590-1478. DOI: 10.1016/j.omx.2019.100042.
Go to original source... - ©ILHAN, L., ARREGI, J. A., PLICHTA, T., VACULÍK, O., NOVOTNÝ, J., ©ERÝ, M. (2025). Compact vacuum setup for laser induced plasma etching with optical emission spectrum monitoring. In: Journal of Vacuum Science & Technology B, Vol. 43, No. 3. pp. 034202. ISSN 2166-2746, 2166-2754. DOI: 10.1116/6.0004296.
Go to original source... - BILEK, O., ONDRIK, J., JANIK, P., KAUTSKY, T. (2024). Microtexturing for Enhanced Machining: Evaluating Tool Performance in Laser-Processed Cutting Inserts. In: Manufacturing Technology, Vol. 24, No. 2. pp. 173-182. Manufacturing Technology. ISSN 12132489, 27879402.
Go to original source... - WEBER, R., GRAF, T., BERGER, P., ONUSEIT, V., WIEDENMANN, M., FREITAG, C., FEUER, A. (2014). Heat accumulation during pulsed laser materials processing. In: Optics Express, Vol. 22, No. 9. pp. 11312. ISSN 1094-4087. DOI: 10.1364/OE.22.011312.
Go to original source... - DUDUTIS, J., PIPIRAS, J., STONYS, R., DAKNYS, E., KILIKEVIČIUS, A., KASPARAITIS, A., RAČIUKAITIS, G., GEČYS, P. (2020). In-depth comparison of conventional glass cutting technologies with laser-based methods by volumetric scribing using Bessel beam and rear-side machining. In: Optics Ex-press, Vol. 28, No. 21. pp. 32133-32151. Optica Publishing Group. ISSN 1094-4087. DOI: 10.1364/OE.402567.
Go to original source... - WLODARCZYK, K., CARTER, R., JAHANBAKHSH, A., LOPES, A., MACKENZIE, M., MAIER, R., HAND, D., MAROTO-VALER, M. (2018). Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates. In: Micromachines, Vol. 9. pp. 409. DOI: 10.3390/mi9080409.
Go to original source... - HUA, J.-G., REN, H., JIA, A., TIAN, Z.-N., WANG, L., JUODKAZIS, S., CHEN, Q.-D., SUN, H.-B. (2020). Convex silica microlens arrays via femtosecond laser writing. In: Optics Letters, Vol. 45, No. 3. pp. 636. ISSN 0146-9592, 1539-4794. DOI: 10.1364/OL.378606.
Go to original source... - NEUENSCHWANDER, B., BUCHER, G. F., NUSSBAUM, C., JOSS, B., MURALT, M., HUNZIKER, U. W., SCHUETZ, P., (2010), Processing of metals and dielectric materials with ps-laser pulses: results, strategies, limitations and needs., DOI: 10.1117/12.846521.
Go to original source... - TURCICOVA, H., NOVAK, O., ROSKOT, L., SMRZ, M., MUZIK, J., CHYLA, M., ENDO, A., MOCEK, T. (2019). New observations on DUV radiation at 257 nm and 206 nm produced by a picosecond diode pumped thin-disk laser. In: Optics Express, Vol. 27, No. 17. pp. 24286-24299. Optica Publishing Group. ISSN 1094-4087. DOI: 10.1364/OE.27.024286.
Go to original source... - ORII, Y., YOSHII, K., KOHNO, K., TANAKA, H., SHIBUYA, K., OKADA, G., MORI, Y., NISHIMAE, J., YOSHIMURA, M. (2023). High-power deep-ultraviolet light generation at 266 nm from frequency quadrupling of a picosecond pulsed 1064 nm laser with a Nd:YVO4 amplifier pumped by a 914 nm laser diode. In: Optics Express, Vol. 31, No. 9. pp. 14705-14714. Optica Publishing Group. ISSN 1094-4087. DOI: 10.1364/OE.488747.
Go to original source... - IPG PHOTONICS. (2025). IPG ULPP-2557 Deep UV Picosecond Fiber Laser. Available from: https://www.ipgphotonics.com/products/lasers/deep-uv-lasers#ftrresources
- GARCIA-LECHUGA, M., UTÉZA, O., SANNER, N., GROJO, D. (2023). Wavelength-Independent Performance of Femtosecond Laser Dielectric Ablation Spanning Over Three Octaves. In: Physical Review Ap-plied, Vol. 19. DOI: 10.1103/PhysRevApplied.19.044047.
Go to original source... - FLAMM, D., SAILER, M., GROSSMANN, D., RÜBLING, S., DECKER, D., GAIDA, C., BLOTHE, M., SUTTER, D., NOLTE, S., (2025), Ultrafast laser micromachining using wavelengths from ~0.2µm to ~2µm., DOI: 10.1117/12.3042674.
Go to original source... - HÄFNER, S., WAGNER, C., SHNIRMAN, B., GINTER, M., BRONS, J., SAILER, M., FEHRENBACHER, A., GROSSMANN, D., FLAMM, D., JANAMI, K., RUEBLING, S., QUENTIN, U., BUDNICKI, A., ZAWISCHA, I., SUTTER, D. H., (2021), Deep UV for materials processing based on the industrial TruMicro Series of ultrafast solid-state laser amplifiers., DOI: 10.1117/12.2577162.
Go to original source... - CHO, K., CHOI, J., KO, C., KIM, M., LEE, J., EOM, E., CHO, S.-H. (2024). 257 nm Deep UV Femto-second Laser Ablation with Minimized Crack and Chipping on Display Ultra-Thin Glass. In: International Journal of Precision Engineering and Manufacturing, Vol. 25, No. 2. pp. 271-283. ISSN 2005-4602. DOI: 10.1007/s12541-023-00929-x.
Go to original source... - STONYTE, D., JUKNA, V., GAILEVIČIUS, D., BALACHNINAITE, O., ZAKARAUSKAS, P., JUODKAZIS, S., (2025), Photomechanical ablation of silicate glasses using femtosecond deep-UV laser pulses., DOI: 10.1364/opticaopen.28724054.v2.
Go to original source... - MOSKAL, D., MARTAN, J., HONNER, M. (2023). Scanning Strategies in Laser Surface Texturing: A Review. In: Micromachines, Vol. 14, No. 6. pp. 1241. Multidisciplinary Digital Publishing Institute. ISSN 2072-666X. DOI: 10.3390/mi14061241.
Go to original source... - RONOH, K., NOVOTNÝ, J., MRŇA, L., KNÁPEK, A., SOBOLA, D. (2024). Effects of laser and scanning parameters on surface modification of MONEL® alloy 400 by picosecond laser. In: Optics & Laser Technology, Vol. 172. pp. 110514. ISSN 0030-3992. DOI: 10.1016/j.optlastec.2023.110514.
Go to original source... - SCHWARZ, S., RUNG, S., ESEN, C., HELLMANN, R. (2021). Enhanced ablation efficiency using GHz bursts in micromachining fused silica. In: Optics Letters, Vol. 46, No. 2. pp. 282. ISSN 0146-9592, 1539-4794. DOI: 10.1364/OL.415959.
Go to original source... - EN ISO 25178-3, (2012), Geometrical product specifications (GPS) -- Surface texture: Areal -- Part 3: Specification operators.
- REDKA, D., VELA, S., SPELLAUGE, M., MINÁR, J., MORALES, M., MOLPECERES, C., HUBER, H. P. (2025). Improved prediction of ultrashort pulse laser ablation efficiency. In: Optics & Laser Technology, Vol. 189. pp. 113103. ISSN 0030-3992. DOI: 10.1016/j.optlastec.2025.113103.
Go to original source... - JABBAR, M. A. (2023). A Design of Experiment Analysis Approach to Improve Part Quality in 3D Printing. In: Manufacturing Technology, Vol. 23, No. 3. pp. 290-297. Manufacturing Technology. ISSN 12132489, 27879402. DOI: 10.21062/mft.2023.034.
Go to original source... - SIREGAR, I., SAEDON, J., SHAHRIMAN ADENAN, M. (2025). Milling Performance of Selective Laser Melted Ti6Al4V: A Taguchi Approach for Surface Roughness Optimization. In: Manufacturing Technology, Vol. 25, No. 2. pp. 230-238. ISSN 12132489, 27879402. DOI: 10.21062/mft.2025.030.
Go to original source... - WLODARCZYK, K. L., LOPES, A. A., BLAIR, P., MAROTO-VALER, M. M., HAND, D. P. (2019). Interlaced Laser Beam Scanning: A Method Enabling an Increase in the Throughput of Ultrafast Laser Machining of Borosilicate Glass. In: Journal of Manufacturing and Materials Processing, Vol. 3, No. 1. pp. 14. Multi-disciplinary Digital Publishing Institute. ISSN 2504-4494. DOI: 10.3390/jmmp3010014.
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.



ORCID...