Manufacturing Technology 2025, 25(3):374-382 | DOI: 10.21062/mft.2025.040

Features of Locomotive Adhesive Mass Utilization in a Braking Mode

Stanislav Semenov ORCID...1, Evgeny Mikhailov ORCID...1, Oleksandr Spivak ORCID...2, Ján Dižo ORCID...3, Miroslav Blatnický ORCID...3, Martin Bučko ORCID...3
1 Department of Logistics Management and Transport Safety, Faculty of Transport and Construction, Volodymyr Dahl East Ukrainian National University, Ioanna Pavla II Str., 17, 01042, Kyiv, Ukraine
2 Department of Electromechanics and Rolling Stock of Railways, Faculty of Infrastructure and Rolling Stock, The State University of Infrastructure and Technologies, Kyrylivska Str., 9, 04071, Kyiv, Ukraine
3 Department of Transport and Handling Machines, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 01026, Žilina, Slovak Republic

The magnitude of a locomotive's traction and braking forces is directly related to its adhesive mass, which largely determines its tractive and braking characteristics. Therefore, an important task is to maximize the utilization of the locomotive's adhesive mass. The degree of adhesive mass utilization is determined by more factors and is quantitatively characterized by the Adhesive Mass Utilization Coeffi-cient (AMUC). One of the ways to increase the AMUC is to improve the locomotive's lever-type brake transmission. In braking mode, it interacts with the wheelsets and the bogie frame and may block the operation of the first stage of the suspension system. This research presents the results of a mathematical model-based study of the influence of certain parameters of the lever brake transmission on the utilisation of locomotive adhesive mass in braking mode. The calculations were carried out for various values of the vertical stiffness of the brake transmission. The results indicate that the distribution of vertical loads across the locomotive's wheelsets in braking mode significantly depends on the vertical stiffness of the brake transmission.

Keywords: Locomotive Undercarriage, Coupling mass, Braking, Load redistribution, Efficiency
Grants and funding:

This publication has been supported by the project VEGA 1/0513/22: „Investigation of the properties of railway brake components in simulated operating conditions on a flywheel brake stand“ and by the project KEGA 031ŽU-4/2023: „Development of key competencies of the graduate of the study program Vehicles and Engines.“

Received: February 18, 2025; Revised: May 3, 2025; Accepted: May 26, 2025; Prepublished online: June 11, 2025; Published: July 4, 2025  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Semenov S, Mikhailov E, Spivak O, Dižo J, Blatnický M, Bučko M. Features of Locomotive Adhesive Mass Utilization in a Braking Mode. Manufacturing Technology. 2025;25(3):374-382. doi: 10.21062/mft.2025.040.
Download citation

References

  1. LACK, T., GERLICI, J. (2005). Contact area and normal stress determination on railway wheel/rail contact. In: Komunikacie, Vol. 7, No. 2, pp. 38 - 45, ISSN 1335-4205. Go to original source...
  2. LACK, T., GERLICI, J. (2014). Wheel/rail tangential contact stress evaluation by means of the modified strip method. In: Communications - Scientific Letters of the University of Žilina, Vol. 16, No. 3a, pp. 33 - 39, ISSN 1335-4205. https://doi.org/10.26552/com.c.2014.3a.33-39 Go to original source...
  3. GERLICI, J., LOVSKA, A., PAVLIUCHENKOV, M. (2024). Study of the dynamics and strength of the detachable module for long cargoes under asymmetric loading diagrams. In: Applied Sciences, Vol. 14, Article number 3211. ISSN 2076-3417. https://doi.org/10.3390/app14083211 Go to original source...
  4. GERLICI, J., LOVSKA, A., KOZÁKOVÁ, K. (2025). Research into the Longitudinal Loading of an Improved Load-Bearing Structure of a Flat Car for Container Transportation. In: Designs, Vol. 9, No. 1, Article number 12, ISSN 2411-9660. https://doi.org/10.3390/designs9010012 Go to original source...
  5. VATULIA, G. L., LOVSKA, A. O., KRASNOKUTSKYI, YE. S. (2023). Research into the transverse loading of the container with sandwich-panel walls when transported by rail. In: IOP Conference Series: Earth and Environmental Science, Vol. 1254, Article Number 012140, eISSN 1755-1315. https://doi.org/10.1088/1755-1315/1254/1/012140 Go to original source...
  6. GERLICI, J., LOVSKA, A., VATULIA, G., PAVLIUCHENKOV, M., KRAVCHENKO, O., SOLCANSKY, S. (2023). Situational adaptation of the open wagon body to container transportation. In: Applied Sciences, Vol. 13, No. 15, Article number 8605, ISSN 2076-3417. https://doi.org/10.3390/app13158605 Go to original source...
  7. RAYAPUREDDY, S.M., MATIJOŠIUS, J., RIMKUS, A., CABAN, J., SŁOWIK, T. (2022). Comparative study of combustion, performance and emission characteristics of hydrotreated vegetable oil-biobutanol fuel blends and diesel fuel on a CI engine. In: Sustainability, Vol. 14, No. 12, Article number 7324, ISSN 2071-1050, https://doi.org/10.3390/su14127324. Go to original source...
  8. KOCSIS SZÜRKE, S., KOVÁCS, G., SYSYN, M., LIU, J., FISCHER, S. (2023). Numerical Optimization of Battery Heat Management of Electric Vehicles. In: Journal of Applied and Computational Mechanics, Vol. 9, No. 4 (2023), pp. 1076 - 1092, ISSN 2383-4536. https://doi.org/10.22055/jacm.2023.43703.4119 Go to original source...
  9. LIPSKIS, I., PUKALSKAS, S., DROŹDZIEL, P., BARTA, D., ŽURAULIS, V., PEČELIŪNAS, R. (2021). Modelling and simulation of the performance and combustion characteristics of a locomotive diesel engine operating on a diesel-LNG mixture. In: Energies, Vol. 14, No. 17, Article number 5318, ISSN 1996-1073. . https://doi.org/10.3390/en14175318 Go to original source...
  10. FISCHER, S. Investigation of the settlement behavior of ballasted railway tracks due to dynamic loading. In: Spectrum of Mechanical Engineering and Operational Research, Vol. 2, No. 1, pp. 24 - 46, ISSN 3042-0288. https://doi.org/10.31181/smeor21202528 Go to original source...
  11. ÉZSIÁS, L., TOMPA, R., FISCHER, S. (2024). Investigation of the possible correlations between specific characteristics of crushed stone aggregates. In: Spectrum of Mechanical Engineering and Operational Research, Vol. 1, No. 1, pp. 10 - 26, ISSN 3042-0288. https://doi.org/10.31181/smeor1120242 Go to original source...
  12. FISCHER, S., HARANGOZÓ, D., NÉMETH, D., KOCSIS, B., SYSYN, M., KURHAN, D., BRAUTIGAM, A. (2024). Investigation of heat-affected zones of thermite rail welding. In: Facta Universitatis, Series: Mechanical Engineering, Vol. 22, No. 4, pp. 689 - 710. ISSN 2335-0164. https://doi.org/10.22190/FUME221217008F Go to original source...
  13. MATEJ, J., SEŃKO, J., CABAN, J., SZYCA, M., GOŁȨBIEWSKI, H. (2024). Influence of unsupported sleepers on flange climb derailment of two freight wagons. In: Open Engineering, Vol. 14, 2024, Article number 20220544, ISSN 2391-5439, https://doi.org/10.1515/eng-2022-0544. Go to original source...
  14. ZHA, CH., ZHA, SH. (2022). Theoretical and experimental study on the influence of ultrasonic vibration on contact friction. In: Manufacturing Technology, Vol. 22, No. 3, pp. 367 - 376, 2022, ISSN 1213-2489, https://doi.org/10.21062/mft.2022.038 Go to original source...
  15. SOOMRO, Z. A. (2015). Computation of slip analysis to detect adhesion for the protection of rail vehicle derailment. In: Journal of Applied and Computational Mechanics, Vol. 1, No. 3, pp. 145 - 151, ISSN 2383-4536. https://doi.org/10.22055/jacm.2015.10999 Go to original source...
  16. ZHOU, J., LIU, L., LI, J. (2024). Multi-objective optimization design of rail grinding profile in curve section of subway based on wear evolution and representative worn profile. In: Eksploatacja i Niezawodnosc - Mainte-nance and Reliability. Vol. 26, No. 4, Article number 191472, ISSN 1507-2711. https://doi.org/10.17531/ein/191472 Go to original source...
  17. FISCHER, S., KOCSIS SZÜRKE, S. (2023). Detection process of energy loss in electric railway vehicles. In: Facta Universitatis, Series: Mechanical Engineering, Vol. 21, No. 1, pp. 81 - 99, ISSN 2335-0164. https://doi.org/10.22190/FUME221104046F. Go to original source...
  18. FISCHER, S., HERMÁN, S., SYSYN, M., KURHAN, D., KOCSIS SZÜRKE, S. (2025). Quantitative analysis and optimization of energy efficiency in electric multiple units. In: Facta Universitatis, Series: Mechanical Engineering, ISSN 2335-0164. https://doi.org/10.22190/FUME241103001F Go to original source...
  19. KAGRAMANIAN, A., AULIN, D., TRUBCHANINOVA, K., CABAN, J., VORONIN, A. BASOV, A. (2023). Perspectives of multifunctional integrated suburban-urban rail transport development. In: Scientific Journal of Silesian University of Technology. Series Transport, Vol. 120, pp. 105 - 115, ISSN 2450-1549. https://doi.org/10.20858/sjsutst.2023.120.7 Go to original source...
  20. HEŁKA, A., WALL, M. (2023). Measurement and analysis of the performance of the PVP-20 slip detection device. In: Scientific Journal of Silesian University of Technology. Series Transport, Vol. 118, pp. 93 - 108, ISSN 0209-3324. https://doi.org/10.20858/sjsutst.2023.118.7 Go to original source...
  21. MYAMLIN, S., LUNYS, O., NEDUZHA, L. (2017). Peculiarities of running gear construction of rolling stock. In: Science and Transport Progress, Vol. 69, No. 3, pp. 130 - 146. ISSN 2307-6666. https://doi.org/10.15802/stp2017/104824. Go to original source...
  22. SAWCZUK, W., MERKISZ-GURANOWSKA, A., CAÑÁS, ARMANDO-MIGUEL, R., KOŁODZIEJSKI, S. (2022). New approach to brake pad wear modelling based on test stand friction-mechanical investigations. In: Eksploatacja i Niezawodnosc - Maintenance and Reliability, Vol. 24, No. 3, pp. 419 - 426, ISSN 1507-2711. https://doi.org/10.17531/ein.2019.3.12 Go to original source...
  23. SPIRYAGIN, M., WU, Q., POLACH, O., THORBURN, J., CHUA, W., SPIRYAGIN, V., STICHEL, S., SHRESTHA, S., BERNAL, E., AHMAD, S., COLE, C., MCSWEENEY, T. (2022). Problems, assumptions and solutions in locomotive design, traction and operational studies. In: Railway Engineering Science, Vol. 30, No. 3, pp. 265 - 288. ISSN 2662-4745. https://doi.org/10.1007/s40534-021-00263-w Go to original source...
  24. MIKHAILOV, E., SEMENOV, S., SAPRONOVA, S., TKACHENKO, V. (2020). On the issue of wheel flange sliding along the rail. In: Lecture Notes in Intelligent Transportation and Infrastructure, Vol. Part F1380, pp. 377 - 385. ISSN 2623-3440. https://doi.org/ 10.1007/978-3-030-38666-5_40 Go to original source...
  25. MIKHAILOV, E., SEMENOV, S., DIŽO, J., KRAVCHENKO K. (2019). Research of possibilities of reducing the driving resistance of a railway vehicle by means of the wheel construction improvement. In: Transportation Research Procedia, Vol. 40, pp. 831 - 838. ISSN 2352-1457. https://doi.org/10.1016/j.trpro.2019.07.117 Go to original source...
  26. SPIRYAGIN, M., WOLFS, P., COLE, C., SPIRYAGIN, V., SUN, Y., MCSWEENEY, T. (2017). Design and simulation of heavy haul locomotives and trains. Ground vehicle engineering series. CRC Press, Boca Raton. ISBN 978-1466-5756-60. Go to original source...
  27. WU, Q., SPIRYAGIN, M., COLE, C. (2020). Train energy simulation with locomotive adhesion model. In: Railway Engineering Science, Vol. 28, No. 1, pp. 75 - 84. ISSN 2662-4745. https://doi.org/10.1007/s40534-020-00202-1. Go to original source...
  28. Adhesion. Indian Railways Centre for Advanced Maintenance Technology. CAMTECH, Gwalior. Phase II - Module No. SYC-TRS-CON-03 (Supp.).
  29. MIKHAILOV, E., GERLICI, J., KLIUIEV, S., SEMENOV, S., LACK, T., KRAVCHENKO, K. (2020). Mechatronic system of control position of wheel pairs by railway vehicles in the rail track. In: 17th Interna-tional Scientific Conference on Dynamics of Rigid and Deformable Bodies 2019, Ústí and Labem, Vol. 2198, Article number 020009. ISSN 0094-243X. https://doi.org/10.1063/1.5140870 Go to original source...
  30. GOOLAK, S., LIUBARSKYI, B., RIABOV, I., LUKOŠEVIČIUS, V., KERŠYS, A., KILIKEVIČIUS, S. (2023). Analysis of the efficiency of traction drive control systems of electric locomotives with asynchronous traction motors. In: Energies, Vol. 16, No. 9, Article number 3689. ISSN 1996-1073. https://doi.org/10.3390/en16093689. Go to original source...
  31. SPIRYAGIN, M., LEE, K. S., YOO, H. H. (2008). Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode. In: Mechanical Systems and Signal Processing, Vol. 22, No. 3, pp. 709 - 720. ISSN 1096-1216. https://doi.org/10.1016/j.ymssp.2007.09.018 Go to original source...
  32. KEROPYAN, A., KANTOVICH, L., VORONIN, B., KUZIEV, D., ZOTOV, V. (2017). Influence of uneven distribution of coupling mass on locomotive wheel pairs, its tractive power, straight and curved sections of industrial rail tracks. In: IOP Conference Series: Earth and Environmental Science, Vol. 87, No. 6, Article number 062005. ISSN 1755-1307. https://doi.org/10.1088/1755-1315/87/6/062005 Go to original source...
  33. LANIGAN, J. L., KRIER, P., JOHNSTONE, L. B., WHITE, B., FERRIDAY, P., LEWIS, R. (2021). Field trials of a methodology for locomotive brake testing to assess friction enhancement in the wheel/rail interface using a representative leaf layer. In: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Vol. 235, No. 9, pp. 1053 - 1064. ISSN 0954-4097. https://doi.org/10.1177/0954409720973135. Go to original source...
  34. KASIMOV, O., MAMAEV, SH., GRISHENKO A. (2021). Causes of rolling stock brake equipment failures. In: Technical Science and Innovation, Vol. 2021, No. 2, pp. 302 - 306. ISSN 2181-1180. https://doi.org/10.51346/tstu-01.21.2-77-0128 Go to original source...
  35. NOVYTSKYI, O., TARAN, I., ZHANBIROV, Z. (2019). Increasing mine train mass by means of improved efficiency of service braking. In: E3S Web of Conferences, Vol. 123, Article Number 01034, ISSN 2555-0403. https://doi.org/10.1051/e3sconf/201912301034 Go to original source...
  36. RAVLYUK, V., RAVLIUK, M., HREBENIUK V., BONDARENKO V. (2019). Research of the calculation scheme for the brake lever transmission and construction of the load model for the brake pads of freight cars. In: IOP Conference Series: Materials Science and Engineering, Vol. 708, Article Number 012026, ISSN 1757-899X. https://doi.org/10.1088/1757-899X/708/1/012026. Go to original source...
  37. LOVSKA, A., RAVLYUK, V., BABENKO, A. (2022). Study of the stress-strain state of the brake lever transmission of the 18-100 carriage model. In: ScienceRise, No. 6, pp. 3 - 9. ISSN 2313-8416. https://doi.org/10.21303/2313-8416.2022.002796 Go to original source...
  38. RAVLYUK, V. G. (2019). The Modernization of the Elements of the Brake Lever Transmission of Freight Cars Bogies. In: Science and Transport Progress, Vol. 5, No. 83, pp. 108 - 121. ISSN 2307-3489. https://doi.org/10.15802/stp2019/182013. Go to original source...
  39. SU-MYUNG PARK, JAE-YOUNG PARK. (2016). Analytical study to the Brake Lever in Basic Brake Sys-tem for Railway Vehicle. In: Journal of the Korea Academia-Industrial Cooperation Society, Vol. 17, No. 8, pp. 624 - 629. ISSN 1975-4701. https://doi.org/10.5762/KAIS.2016.17.8.624 Go to original source...
  40. GORBUNOV, M., KRAVCHENKO, K., BUREIKA, G., GERLICI, J., NOZHENKO, O., VAIČIUNAS, G., BUČINSKAS, V., STEIŠUNAS, S. (2019). Estimation of sand electrification influence on locomotive wheel/rail adhesion processes. In: Eksploatacja i Niezawodnosc - Maintenance and Reliability, Vol. 21, No. 3, pp. 460 - 467, ISSN 1507-2711. https://doi.org/10.17531/ein.2019.3.12 Go to original source...
  41. GERLICI, J., GORBUNOV, M., KRAVCHENKO, K., LACK, T. (2020). Planning of a numerical experiment in order to determine the effect of operating factors on the traction-adhesion properties of locomotives. In: Manufacturing Technology, Vol. 20, No. 6, pp. 728 - 732, ISSN 1213-2489. https://doi.org/10.21062/MFT.2020.069 Go to original source...
  42. GERLICI, J., GORBUNOV, M., KRAVCHENKO, K., PROSVIROVA, O., LACK, T., HAUSRER, V. (2018). Assessment of innovative methods of the rolling stock brake system efficiency increasing. In: Manufacturing Technology, Vol. 18, No. 1, pp. 35 - 38, ISSN 1213-2489, https://doi.org/10.21062/ujep/49.2018/a/1213-2489/MT/18/1/35 Go to original source...
  43. TOPCZEWSKA, K., GERLICI, J., YEVTUSHENKO, A., KUCIEJ, M., KRAVCHENKO, K. (2022). Analytical model of the frictional heating in a railway brake disc at single braking with experimental verification. In: Materials, Vol. 15, No. 19, 6821, ISSN 1996-1944. https://doi.org/10.3390/ma15196821 Go to original source...
  44. KOŠTIALOVÁ, D., JANEKOVÁ, M., DUBCOVÁ, P., HULC, M. (2024). Thermal - static analysis of the brake disc in SolidWorks. In: Manufacturing Technology, Vol. 24, No. 4, pp. 588 - 593, ISSN 1213-2489, https://doi.org/10.21062/mft.2024.061 Go to original source...
  45. FILONOV, S.P., GIBALOV, A.I., NIKITIN, E.A. (1996). Teplovoz 2TJe116. Izd.3. M.: Transport, 1996. 328 s. https://raillook.com/materialy/transport/jeleznodorojniy/tyagoviy-podvijnoi-sostav/1996-2te116-izd-3-s-p-filonov-a-i-gibalov-e-a-nikitin/
  46. Locomotive 2TE116. Available on: https://en.wikipedia.org/wiki/2TE116#/media/File:2TE116-1155.jpg Wikipedia
  47. PTC Mathcad. https://www.mathcad.com/en

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.