Manufacturing Technology 2024, 24(4):608-617 | DOI: 10.21062/mft.2024.066

Mechanical Properties, Structure and Machinability of the H13 Tool Steel Produced By Material Extrusion

Martin Maly ORCID...1,2, Stepan Kolomy ORCID...1, Radek Kasan ORCID...1,2, Lukas Bartl ORCID...1,2, Josef Sedlak ORCID...1, Jan Zouhar ORCID...1
1 Institute of Manufacturing Technology, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
2 Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyòova 656/123, 612 00 Brno, Czech Republic

The study focuses on an evaluation of mechanical properties of the H13 tool steel manufactured by the material extrusion and further comparison with conventionally produced material. Notably, for achieving sufficient surface quality of functional parts further post-processing is required. Thus, a comprehensive investigation, encompassing hardness, ultimate tensile strength (UTS) and yield strength (YS) measurement, microstructure, and machinability was performed. The material extrusion, an increasingly utilized additive manufacturing (AM) technique, offers a viable alternative to the prevalent laser powder bed fusion (LPBF) methods. This method enables a creation of complex geometries using various materials. The investigation revealed that the horizontal orientation of parts yielded the highest mechanical properties, reaching the ultimate tensile strength of approximately 1200 MPa. Additionally, the material exhibited the hardness of 47 HRC in the as-built state. The conventionally produced steel resulted in the higher UTS and YS in comparison to the AM material. The machinability of the as-built material in regard to cutting forces and surface roughness was also evaluated Lower surface roughness was achieved by decreasing feed per tooth. Optically measure material porosity was 6.13 % with maximum pore size 7.43 µm. The primary objective of this research is to optimize the mechanical properties of H13 tool steel post-printing, with a broader aim to apply the gained insights to improve other materials produced by the material extrusion.

Keywords: Material extrusion, H13 tool steel, Additive manufacturing, Microstructure, Mechanical properties
Grants and funding:

This research study was supported by the grant “Modern technologies for processing advanced materials used for interdisciplinary applications”, FSI-S-22-7957. This work has been performed in the project RICAIP: Research and Innovation Centre on Advanced Industrial Production which has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 857306 and from the Ministry of Education, Youth and Sports under OP RDE grant agreement No CZ.02.1.01/0.0/0.0/17_043/0010085

Received: February 18, 2024; Revised: July 3, 2024; Accepted: July 8, 2024; Prepublished online: July 9, 2024; Published: September 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Maly M, Kolomy S, Kasan R, Bartl L, Sedlak J, Zouhar J. Mechanical Properties, Structure and Machinability of the H13 Tool Steel Produced By Material Extrusion. Manufacturing Technology. 2024;24(4):608-617. doi: 10.21062/mft.2024.066.
Download citation

References

  1. NIE, Z., WANG, G., MCGUFFIN-CAWLEY, J.D., NARAYANAN, B., ZHANG, S., et al. (2016). Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. In: Journal of Materials Processing Technology. Vol. 235, pp. 171-186. ISSN 09240136. https://doi.org/10.1016/j.jmatprotec.2016.04.006. Go to original source...
  2. FAYAZFAR, H., SALARIAN, M., ROGALSKY, A., SARKER, D., RUSSO, P., et al. (2018). A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Vol. 144, pp. 98-128. ISSN 02641275. https://doi.org/10.1016/j.matdes.2018.02.018. Go to original source...
  3. COTTAM, R., WANG, J., LUZIN, V. (2014). Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing. In: Journal of Materials Research. Vol. 29, no. 17, pp. 1978-1986. ISSN 0884-2914. https://doi.org/10.1557/jmr.2014.190. Go to original source...
  4. HAJNYS, J., PAGAC, M., KOTERA, O., PETRU, J., SCHOLZ, S. (2019). Influence of basic process parameters on mechanical and internal properties of 316L steel in SLM process for RENISHAW AM400. In: MM Science Journal. Vol. 2019, no. 01, pp. 2790-2794. ISSN 18031269. https://doi.org/10.17973/MMSJ.2019_03_2018127. Go to original source...
  5. HE, Y., ZHONG, M., BEUTH, J., WEBLER, B. (2020). A study of microstructure and cracking behavior of H13 tool steel produced by laser powder bed fusion using single-tracks, multi-track pads, and 3D cubes. In: Journal of Materials Processing Technology. Vol. 286. ISSN 09240136. https://doi.org/10.1016/j.jmatprotec.2020.116802. Go to original source...
  6. REN, B., LU, D., ZHOU, R., LI, Z., GUAN, J. (2019). Preparation and mechanical properties of selective laser melted H13 steel. In: Journal of Materials Research. Vol. 34, no. 08, pp. 1415-1425. ISSN 0884-2914. https://doi.org/10.1557/jmr.2019.10. Go to original source...
  7. MERTENS, R., VRANCKEN, B., HOLMSTOCK, N., KINDS, Y., KRUTH, J.-P., et al. (2016). Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts. In: Physics Procedia. Vol. 83, pp. 882-890. ISSN 18753892. https://doi.org/10.1016/j.phpro.2016.08.092. Go to original source...
  8. NARASIMHARAJU, S. R., ZENG, W., SEE, T. L., ZHU, Z., SCOTT, P., et al. (2022). A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. In: Journal of Manufacturing Processes. Vol. 75, pp. 375-414. ISSN 15266125. https://doi.org/10.1016/j.jmapro.2021.12.033. Go to original source...
  9. KOLOMY, S., SEDLAK, J., ZOUHAR, J., SLANY, M., BENC, M., et al. (2023). Influence of Aging Temperature on Mechanical Properties and Structure of M300 Maraging Steel Produced by Selective Laser Melting. In: Materials. Vol. 16, no. 3, p. 977. ISSN 1996-1944. https://doi.org/10.3390/ma16030977. Go to original source...
  10. YONEHARA, M., IKESHOJI, T., NAGAHAMA, T., MIZOGUCHI, T., TANO, M., et al. (2020). Parameter optimization of the high-power laser powder bed fusion process for H13 tool steel. In: The International Journal of Advanced Manufacturing Technology. Vol. 110, no. 1-2, pp. 427-437. ISSN 0268-3768. https://doi.org/10.1007/s00170-020-05879-6. Go to original source...
  11. NARVAN, M., GHASEMI, A., FEREIDUNI, E., KENDRISH, S., ELBESTAWI, M. (2021). Part deflection and residual stresses in laser powder bed fusion of H13 tool steel. Vol. 204. ISSN 02641275. https://doi.org/10.1016/j.matdes.2021.109659. Go to original source...
  12. ABDEL-LATIF, M., ABDEL-GHANY, K., EL-MAHALLAWY, N., MATTAR, T. (2021). Effect of Laser Speed on Microstructure and Mechanical Properties of AISI H13 Tool Steel Prepared by Laser Powder Bed Fusion Process. In: Journal of Materials Engineering and Performance. Vol. 30, no. 12, pp. 8821-8830. ISSN 1059-9495. https://doi.org/10.1007/s11665-021-06321-y. Go to original source...
  13. COOKE, S., AHMADI, K., WILLERTH, S., HERRING, R. (2020). Metal additive manufacturing: Technology, metallurgy and modelling. In: Journal of Manufacturing Processes. Vol. 57, pp. 978-1003. ISSN 15266125. https://doi.org/10.1016/j.jmapro.2020.07.025. Go to original source...
  14. OPELA, P., BENC M., KOLOMY, S., JAKUBEK, Z., BERANOVA D. (2023). High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging. In: Materials. Vol. 16, no. 9, p. 3400. ISSN 1996-1944. https://doi.org/10.3390/ma16093400. Go to original source...
  15. BOSE, A., REIDY, J. P., PÖTSCHKE, J. (2024). Sinter-based additive manufacturing of hardmetals: Review. In: International Journal of Refractory Metals and Hard Materials. Vol. 119. ISSN 02634368. https://doi.org/10.1016/j.ijrmhm.2023.106493. Go to original source...
  16. TIMKO, P., CZANOVA, T., CZAN, A., SLABEJOVA, S., HOLUBJAK, J., CEDZO, M. (2022). Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies. In: Manufacturing Technology 2022, 22(3), 347-355 ISSN 12132489. doi:10.21062/mft.2022.032 Go to original source...
  17. JANSA, J., VOLODARSKAJA, A., HLINKA, J., ZÁRYBNICKÁ, L., POLZER, S., et al. (2023). Corrosion and material properties of 316L stainless steel produced by material extrusion technology. In: Journal of Manufacturing Processes. Vol. 88, pp. 232-245. ISSN 15266125. https://doi.org/10.1016/j.jmapro.2023.01.035. Go to original source...
  18. CZAN, A., CZANOVA, T., HOLUBJAK, J., NOVAK, M., CZANOVA, N., CZAN, A., KRISAK, D. (2024). Analysis of the Basic Characteristics of the Working Accuracy of the Atomic Diffusion Additive Manufacturing ADAM Process by Comparison with the Selective Laser Melting SLM Process. In: Manufacturing Technology, 24(1), 15-27 ISSN 12132489. doi:10.21062/mft.2024.015 Go to original source...
  19. MAZUR, M., BRINCAT, P., LEARY, M., BRANDT, M. (2017). Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. In: The International Journal of Advanced Manufacturing Technology. Vol. 93, no. 1-4, pp. 881-900. ISSN 0268-3768. https://doi.org/10.1007/s00170-017-0426-7. Go to original source...
  20. LALEH, M., SADEGHI, E., REVILLA, R. I., CHAO, Q., HAGHDADI, N., et al. (2023). Heat treatment for metal additive manufacturing. In: Progress in Materials Science. Vol. 133. ISSN 00796425. https://doi.org/10.1016/j.pmatsci.2022.101051. Go to original source...
  21. KUMARAN, M., SENTHILKUMAR, V. (2023). Influence of Heat Treatment on Stainless Steel 316L Alloy Manufactured by Hybrid Additive Manufacturing Using Powder Bed Fusion and Directed Energy Deposition. In: Metals and Materials International. Vol. 29, no. 2, pp. 467-484. ISSN 1598-9623. https://doi.org/10.1007/s12540-022-01225-5. Go to original source...
  22. MCLEAN, N., BERMINGHAM, M.J., COLEGROVE, P., SALES, A., SORO, N., et al. (2022). Effect of Hot Isostatic Pressing and heat treatments on porosity of Wire Arc Additive Manufactured Al 2319. In: Journal of Materials Processing Technology. Vol. 310. ISSN 09240136. https://doi.org/10.1016/j.jmatprotec.2022.117769. Go to original source...
  23. GOHN, A. M., BROWN, D., MENDIS, G., FORSTER, S., RUDD, N., et al. (2022). Mold inserts for injection molding prototype applications fabricated via material extrusion additive manufacturing. In: Additive Manufacturing. Vol. 51. ISSN 22148604. https://doi.org/10.1016/j.addma.2022.102595. Go to original source...
  24. PAPAGEORGIOU, D., MEDREA, C., KYRIAKOU, N. (2013). Failure analysis of H13 working die used in plastic injection moulding. In: Engineering Failure Analysis. Vol. 35, pp. 355-359. ISSN 13506307. https://doi.org/10.1016/j.engfailanal.2013.02.028. Go to original source...
  25. KUO, C., XU, W. (2018). Effects of different cooling channels on the cooling efficiency in the wax injection molding process. In: The International Journal of Advanced Manufacturing Technology. Vol. 98, no. 1-4, pp. 887-895. ISSN 0268-3768. https://doi.org/10.1007/s00170-018-2345-7. Go to original source...
  26. HAJNYS, J., PAGAC, M., MESICEK, J., PETRU, J., SPALEK, F. (2020). Research of 316L Metallic Powder for Use in SLM 3D Printing. In: Advances in Materials Science. Vol. 20, no. 1, pp. 5-15. ISSN 2083-4799. https://doi.org/10.2478/adms-2020-0001. Go to original source...
  27. ISO 6892:2019 METALLIC MATERIALS. TENSILE TESTING. PART 1: METHOD OF TEST AT AMBIENT TEMPERATURE.
  28. SLOTWINSKI, J. A., GARBOCZI, E. J., HEBENSTREIT, K. M. (2014). Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control. In: Journal of Research of the National Institute of Standards and Technology. Vol. 119. ISSN 2165-7254. https://doi.org/10.6028/jres.119.019. Go to original source...
  29. BECHNY, V., MATUS, M., JOCH, R., DRBUL, M., CZAN, A., SAJGALIK, M., NOVY, F. (2024) Influence of the Orientation of Parts Produced by Additive Manufacturing on Mechanical Properties. In: Manufacturing Technology, 24(1), 2-8. ISSN 12132489. doi:10.21062/mft.2024.021 Go to original source...
  30. NOVAK, M., HAUSNEROVA, B., PATA, V., SANETRNIK, D. (2024). On the possibilities of merging additive manufacturing and powder injection molding in the production of metal parts. In: Rapid Prototyping Journal. Vol. 30, no. 11, pp. 50-58. ISSN 1355-2546. https://doi.org/10.1108/RPJ-02-2023-0047. Go to original source...
  31. ÅSBERG, M., FREDRIKSSON, G., HATAMI, S., FREDRIKSSON, W., KRAKHMALEV, P. (2019). Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel. In: Materials Science and Engineering: A. Vol. 742, pp. 584-589. ISSN 09215093. https://doi.org/10.1016/j.msea.2018.08.046. Go to original source...
  32. FRYZOWICZ, K., DZIURKA, R., BARDO, R., MARCISZKO-WI±CKOWSKA, M., BA³A, P. (2023). Point-by-point laser exposure for crack susceptibility reduction in Powder Bed Fusion processing of H11 tool steel. In: Journal of Materials Processing Technology. Vol. 316. ISSN 09240136. https://doi.org/10.1016/j.jmatprotec.2023.117946. Go to original source...
  33. LIU, N., ZHENG, C., XIANG, D., HUANG, H., WANG, J. (2019). Effect of cutting parameters on tool wear under minimum quantity cooling lubrication (MQCL) conditions. In: International journal of advanced manufacturing technology. Vol. 105, no. 1-4, pp. 515-529. ISSN 0268-3768. https://doi.org/10.1007/s00170-019-04259-z. Go to original source...
  34. SARIKAYA, M., YILMAZ, V., GULLU, A. (2016). Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy. In: Journal of cleaner production. Vol. 133, pp. 172-181. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2016.05.122. Go to original source...
  35. OKONKWO, U., OKOKPUJIE, I., SINEBE, J., EZUGWU, Ch. (2015). Comparative analysis of aluminium surface roughness in end-milling under dry and minimum quantity lubrication (MQL) conditions. In: Manufacturing review (Ulis, France). Vol. 2, p. 30. ISSN 2265-4224. https://doi.org/10.1051/mfreview/2015033. Go to original source...
  36. SYAHRI, B., PRASETYA, F., REFDINAL, R., SYAHRIAL, S. (2021). Effect of cutting speed on milling process on surface roughness of ST-37 steel material workpiece. In: Jurnal Inovasi Vokasional dan Teknologi. Vol. 21, no. 1, pp. 19-26. ISSN 1411-3414. https://doi.org/10.24036/invotek.v21i1.766. Go to original source...
  37. KOLOMY, S., MALY, M., SEDLAK, J., ZOUHAR, J., SLANY, M., et al. (2024). Machinability of extruded H13 tool steel: Effect of cutting parameters on cutting forces, surface roughness, microstructure, and residual stresses. In: Alexandria Engineering Journal. Vol. 99, pp. 394-407. ISSN 11100168. https://doi.org/10.1016/j.aej.2024.05.018. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.