Manufacturing Technology 2022, 22(4):484-493 | DOI: 10.21062/mft.2022.060

Research on the Measurement of Thermal Deformation of Tools on High-speed Machining Centers Based on Image Processing Technology

Changlong Zhao ORCID..., Ming Li ORCID..., Junbao Yang ORCID..., Chen Ma ORCID..., Zhenrong Ma ORCID...
College of mechanical and vehicle engineering, Changchun University, Changchun 130022. Changlong Zhao, China

This paper focuses on the issues of tool thermal deformation during machine preheating,designing an image-processing-based solution for measuring these tool thermal deformation, to obtain the axial thermal error of the tool as a function of preheating time.This paper uses a high-speed camera to collect images of tool thermal deformation. Using MATLAB software, rough localization of images by Canny algorithm for edge extraction. Accurately locating tool edge outlines using a sub-pixel fitted edge detection method, that is, using the least squares method to fit a tool tip arc curve. From this, the thermal deformation during tool preheating is calculated. This study will serve as a basis for the compensation of thermal errors in machine tools.

Keywords: Thermal deformation of tools, Image processing, Edge Extraction, Least squares method

Received: July 6, 2022; Revised: October 5, 2022; Accepted: October 5, 2022; Prepublished online: October 6, 2022; Published: October 17, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhao C, Li M, Yang J, Ma C, Ma Z. Research on the Measurement of Thermal Deformation of Tools on High-speed Machining Centers Based on Image Processing Technology. Manufacturing Technology. 2022;22(4):484-493. doi: 10.21062/mft.2022.060.
Download citation

References

  1. Yu, H., Jiang, L., Wang, J., Qin, S., & Ding, G. (2020). Prediction of machining accuracy based on geomet-ric error estimation of tool rotation profile in five-axis multi-layer flank milling process. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(11), 2160-2177. England. ISSN:2041-2983 Go to original source...
  2. Zhao, G., Su, Y., Zheng, G., Zhao, Y., & Li, C. (2020). Tool tip cutting specific energy prediction model and the influence of machining parameters and tool wear in milling. Proceedings of the Institution of Me-chanical Engineers, Part B: Journal of Engineering Manufacture, 234(10), 1346-1354. England. ISSN:2041-2975 Go to original source...
  3. Yang, M., Dai, Y., Huang, Q., Mao, X., Li, L., Jiang, X., & Peng, Y. (2019). A modal parameter identifica-tion method of machine tools based on particle swarm optimization. Proceedings of the Institution of Me-chanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(17), 6112-6123. England. ISSN:2041-2983 Go to original source...
  4. Maznah Iliyas Ahmad, Yusri Yusof & Md Elias Daud. (2020). Machine monitoring system: a decade in re-view. The International Journal of Advanced Manufacturing Technology, 108(11), 3645-3659. England. ISSN:0268-3768 Go to original source...
  5. Baum, C., Brecher, C., Klatte, M., Lee, T. H., & Tzanetos, F. (2018). Thermally induced volumetric error compensation by means of integral deformation sensors. Procedia CIRP, 72, 1148-1153. France. ISSN:2212-8271 Go to original source...
  6. Vasilko, K. (2019) Tribological Mechanism in Chip Formation and Its Use to Improve Machining Process. Manufacturing Technology. 19(6), 1060-1066. Czech Republic. ISSN:1213-2489. Go to original source...
  7. Stancekova, D., Rudawska, A., Mrázik, J., & Turian, F. (2020) Comparision of the Bearing Rings Defor-mation after Heat Treatment. Manufacturing Technology. 20(5), 677-683. Czech Republic. ISSN:1213-2489. Go to original source...
  8. Wiessner, M., Blaser, P., Böhl, S., Mayr, J., Knapp, W., & Wegener, K. (2018). Thermal test piece for 5-axis machine tools. Precision Engineering, 52, 407-417. United States. ISSN:0141-6359 Go to original source...
  9. Mare¹, M., Horej¹, O., & Hornych, J. (2020). Thermal Error Minimization of a Turning-Milling Center with Respect to its Multi-Functionality. International Journal of Automation Technology, 14(3), 475-483. Japan. ISSN:1881-7629 Go to original source...
  10. Liu, K., Li, T., Liu, H., Liu, Y., & Wang, Y. (2019). Analysis and prediction for spindle thermal bending deformations of a vertical milling machine. IEEE Transactions on Industrial Informatics, 16(3), 1549-1558. United States. ISSN:1551-3203 Go to original source...
  11. Putz, M., Regel, J., Wenzel, A., & Bräunig, M. (2019). Thermal errors in milling: comparison of dis-placements of the machine tool, tool and workpiece. Procedia CIRP, 82, 389-394. France. ISSN:2212-8271 Go to original source...
  12. Marcelo O. dos Santos, Gilmar F. Batalha, Ed C. Bordinassi, &Gelson F. Miori. (2018). Numerical and ex-perimental modeling of thermal errors in a five-axis CNC machining center. The International Journal of Advanced Manufacturing Technology, 96(5), 2619-2642. Germany, ISSN:1433-3015 Go to original source...
  13. Ye, W. H., Guo, Y. X., Zhou, H. F., Liang, R. J., & Chen, W. F. (2020). Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine. Advances in Manufacturing, 8(1), 119-132. China. ISSN:2095-3127 Go to original source...
  14. Lambiase, F., Paoletti, A., & Di Ilio, A. (2018). Forces and temperature variation during friction stir welding of aluminum alloy AA6082-T6. The International Journal of Advanced Manufacturing Technology, 99(1), 337-346. England. ISSN:0268-3768 Go to original source...
  15. Yue, H. T., Guo, C. G., Li, Q., Zhao, L. J., & Hao, G. B. (2020). Thermal error modeling of CNC milling machining spindle based on an adaptive chaos particle swarm optimization algorithm. Journal of the Brazili-an Society of Mechanical Sciences and Engineering, 42(8), 1-13. Brazil. ISSN:1678-5878 Go to original source...
  16. Yonglun Chen Huaian Yi Chen Liao Peng Huang Qiuchang Chen. (2021). Visual measurement of milling surface roughness based on Xception model with convolutional neural network. Measurement, 186, 110217. England. ISSN:0263-2241 Go to original source...
  17. Malhotra, J., & Jha, S. (2021). Fuzzy c-means clustering based colour image segmentation for tool wear monitoring in micro-milling. Precision Engineering, 72, 690-705. United States. ISSN:0141-6359 Go to original source...
  18. Peng, R., Liu, J., Fu, X., Liu, C., & Zhao, L. (2021). Application of machine vision method in tool wear monitoring. The International Journal of Advanced Manufacturing Technology, 116(3), 1357-1372. England. ISSN:0268-3768 Go to original source...
  19. Brady, D. J., Fang, L., & Ma, Z. (2020). Deep learning for camera data acquisition, control, and image esti-mation. Advances in Optics and Photonics, 12(4), 787-846. United States. ISSN:1943-8206 Go to original source...
  20. Xiao, M., Sun, Z., Shen, X., Shi, L., & Zhang, J. (2019). Research on 3d reconstruction technology of tool wear area. Manufacturing Technology, 19(2), 345-349. Czech Republic. ISSN:1213-2489. Go to original source...
  21. Anjar Wanto, Syafrika Deni Rizki&Silfia Andini. (2020). Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification. Journal of Physics: Conference Se-ries,1933(1), 012037. England. ISSN:1742-6596 Go to original source...
  22. Dutta, S., Pal, S. K., & Sen, R. (2018). Progressive tool condition monitoring of end milling from machined surface images. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(2), 251-266. England. ISSN:0954-4054 Go to original source...
  23. Charmouti, B., Junoh, A. K., Abdurrazzaq, A., & Mashor, M. Y. (2022). A new denoising method for re-moving salt & pepper noise from image. Multimedia Tools and Applications, 81(3), 3981-3993. Netherlands. ISSN:1380-7501 Go to original source...
  24. Ruitao Peng, Haolin Pang&Haojian Jiang. (2020). Study of tool wear monitoring using machine vision. Automatic Control and Computer Sciences, 54(3), 259-270. United States. ISSN:0146-4116 Go to original source...
  25. Liu, Y., Zhang, Q., Chen, Y., Cheng, Q., & Peng, C. (2021). Hyperspectral Image Denoising With Log-Based Robust PCA. 2021 IEEE International Conference on Image Processing Proceedings, 1634-1638. United States. ISSN:2381-8549 Go to original source...
  26. Müller, J., Wittig, R., Müller, J., & Tetzlaff, R. (2016). An improved cellular nonlinear network architecture for binary and grayscale image processing. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(8), 1084-1088. United States. ISSN:1549-7747 Go to original source...
  27. Kumawat, A., & Panda, S. (2021). A robust edge detection algorithm based on feature-based image registra-tion (FBIR) using improved canny with fuzzy logic (ICWFL). The Visual Computer, 1-22. Germany. ISSN:1432-2315. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.