Manufacturing Technology 2022, 22(4):484-493 | DOI: 10.21062/mft.2022.060
Research on the Measurement of Thermal Deformation of Tools on High-speed Machining Centers Based on Image Processing Technology
- College of mechanical and vehicle engineering, Changchun University, Changchun 130022. Changlong Zhao, China
This paper focuses on the issues of tool thermal deformation during machine preheating,designing an image-processing-based solution for measuring these tool thermal deformation, to obtain the axial thermal error of the tool as a function of preheating time.This paper uses a high-speed camera to collect images of tool thermal deformation. Using MATLAB software, rough localization of images by Canny algorithm for edge extraction. Accurately locating tool edge outlines using a sub-pixel fitted edge detection method, that is, using the least squares method to fit a tool tip arc curve. From this, the thermal deformation during tool preheating is calculated. This study will serve as a basis for the compensation of thermal errors in machine tools.
Keywords: Thermal deformation of tools, Image processing, Edge Extraction, Least squares method
Received: July 6, 2022; Revised: October 5, 2022; Accepted: October 5, 2022; Prepublished online: October 6, 2022; Published: October 17, 2022 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Yu, H., Jiang, L., Wang, J., Qin, S., & Ding, G. (2020). Prediction of machining accuracy based on geomet-ric error estimation of tool rotation profile in five-axis multi-layer flank milling process. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(11), 2160-2177. England. ISSN:2041-2983
Go to original source...
- Zhao, G., Su, Y., Zheng, G., Zhao, Y., & Li, C. (2020). Tool tip cutting specific energy prediction model and the influence of machining parameters and tool wear in milling. Proceedings of the Institution of Me-chanical Engineers, Part B: Journal of Engineering Manufacture, 234(10), 1346-1354. England. ISSN:2041-2975
Go to original source...
- Yang, M., Dai, Y., Huang, Q., Mao, X., Li, L., Jiang, X., & Peng, Y. (2019). A modal parameter identifica-tion method of machine tools based on particle swarm optimization. Proceedings of the Institution of Me-chanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(17), 6112-6123. England. ISSN:2041-2983
Go to original source...
- Maznah Iliyas Ahmad, Yusri Yusof & Md Elias Daud. (2020). Machine monitoring system: a decade in re-view. The International Journal of Advanced Manufacturing Technology, 108(11), 3645-3659. England. ISSN:0268-3768
Go to original source...
- Baum, C., Brecher, C., Klatte, M., Lee, T. H., & Tzanetos, F. (2018). Thermally induced volumetric error compensation by means of integral deformation sensors. Procedia CIRP, 72, 1148-1153. France. ISSN:2212-8271
Go to original source...
- Vasilko, K. (2019) Tribological Mechanism in Chip Formation and Its Use to Improve Machining Process. Manufacturing Technology. 19(6), 1060-1066. Czech Republic. ISSN:1213-2489.
Go to original source...
- Stancekova, D., Rudawska, A., Mrázik, J., & Turian, F. (2020) Comparision of the Bearing Rings Defor-mation after Heat Treatment. Manufacturing Technology. 20(5), 677-683. Czech Republic. ISSN:1213-2489.
Go to original source...
- Wiessner, M., Blaser, P., Böhl, S., Mayr, J., Knapp, W., & Wegener, K. (2018). Thermal test piece for 5-axis machine tools. Precision Engineering, 52, 407-417. United States. ISSN:0141-6359
Go to original source...
- Mare¹, M., Horej¹, O., & Hornych, J. (2020). Thermal Error Minimization of a Turning-Milling Center with Respect to its Multi-Functionality. International Journal of Automation Technology, 14(3), 475-483. Japan. ISSN:1881-7629
Go to original source...
- Liu, K., Li, T., Liu, H., Liu, Y., & Wang, Y. (2019). Analysis and prediction for spindle thermal bending deformations of a vertical milling machine. IEEE Transactions on Industrial Informatics, 16(3), 1549-1558. United States. ISSN:1551-3203
Go to original source...
- Putz, M., Regel, J., Wenzel, A., & Bräunig, M. (2019). Thermal errors in milling: comparison of dis-placements of the machine tool, tool and workpiece. Procedia CIRP, 82, 389-394. France. ISSN:2212-8271
Go to original source...
- Marcelo O. dos Santos, Gilmar F. Batalha, Ed C. Bordinassi, &Gelson F. Miori. (2018). Numerical and ex-perimental modeling of thermal errors in a five-axis CNC machining center. The International Journal of Advanced Manufacturing Technology, 96(5), 2619-2642. Germany, ISSN:1433-3015
Go to original source...
- Ye, W. H., Guo, Y. X., Zhou, H. F., Liang, R. J., & Chen, W. F. (2020). Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine. Advances in Manufacturing, 8(1), 119-132. China. ISSN:2095-3127
Go to original source...
- Lambiase, F., Paoletti, A., & Di Ilio, A. (2018). Forces and temperature variation during friction stir welding of aluminum alloy AA6082-T6. The International Journal of Advanced Manufacturing Technology, 99(1), 337-346. England. ISSN:0268-3768
Go to original source...
- Yue, H. T., Guo, C. G., Li, Q., Zhao, L. J., & Hao, G. B. (2020). Thermal error modeling of CNC milling machining spindle based on an adaptive chaos particle swarm optimization algorithm. Journal of the Brazili-an Society of Mechanical Sciences and Engineering, 42(8), 1-13. Brazil. ISSN:1678-5878
Go to original source...
- Yonglun Chen Huaian Yi Chen Liao Peng Huang Qiuchang Chen. (2021). Visual measurement of milling surface roughness based on Xception model with convolutional neural network. Measurement, 186, 110217. England. ISSN:0263-2241
Go to original source...
- Malhotra, J., & Jha, S. (2021). Fuzzy c-means clustering based colour image segmentation for tool wear monitoring in micro-milling. Precision Engineering, 72, 690-705. United States. ISSN:0141-6359
Go to original source...
- Peng, R., Liu, J., Fu, X., Liu, C., & Zhao, L. (2021). Application of machine vision method in tool wear monitoring. The International Journal of Advanced Manufacturing Technology, 116(3), 1357-1372. England. ISSN:0268-3768
Go to original source...
- Brady, D. J., Fang, L., & Ma, Z. (2020). Deep learning for camera data acquisition, control, and image esti-mation. Advances in Optics and Photonics, 12(4), 787-846. United States. ISSN:1943-8206
Go to original source...
- Xiao, M., Sun, Z., Shen, X., Shi, L., & Zhang, J. (2019). Research on 3d reconstruction technology of tool wear area. Manufacturing Technology, 19(2), 345-349. Czech Republic. ISSN:1213-2489.
Go to original source...
- Anjar Wanto, Syafrika Deni Rizki&Silfia Andini. (2020). Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification. Journal of Physics: Conference Se-ries,1933(1), 012037. England. ISSN:1742-6596
Go to original source...
- Dutta, S., Pal, S. K., & Sen, R. (2018). Progressive tool condition monitoring of end milling from machined surface images. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(2), 251-266. England. ISSN:0954-4054
Go to original source...
- Charmouti, B., Junoh, A. K., Abdurrazzaq, A., & Mashor, M. Y. (2022). A new denoising method for re-moving salt & pepper noise from image. Multimedia Tools and Applications, 81(3), 3981-3993. Netherlands. ISSN:1380-7501
Go to original source...
- Ruitao Peng, Haolin Pang&Haojian Jiang. (2020). Study of tool wear monitoring using machine vision. Automatic Control and Computer Sciences, 54(3), 259-270. United States. ISSN:0146-4116
Go to original source...
- Liu, Y., Zhang, Q., Chen, Y., Cheng, Q., & Peng, C. (2021). Hyperspectral Image Denoising With Log-Based Robust PCA. 2021 IEEE International Conference on Image Processing Proceedings, 1634-1638. United States. ISSN:2381-8549
Go to original source...
- Müller, J., Wittig, R., Müller, J., & Tetzlaff, R. (2016). An improved cellular nonlinear network architecture for binary and grayscale image processing. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(8), 1084-1088. United States. ISSN:1549-7747
Go to original source...
- Kumawat, A., & Panda, S. (2021). A robust edge detection algorithm based on feature-based image registra-tion (FBIR) using improved canny with fuzzy logic (ICWFL). The Visual Computer, 1-22. Germany. ISSN:1432-2315.
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.