Manufacturing Technology 2021, 21(1):3-13 | DOI: 10.21062/mft.2021.012

Experimental study of thin steel tubes welded by fiber laser

Dana Bako¹ová, Al¾beta Bako¹ová
Faculty of Industrial Technologies in Púchov, Alexander Dubèek University of Trenèín. I. Krasku 491/30, 020 01 Púchov. Slovakia

The laser welding method is one of the youngest but the most progressive welding methods. The advantages of laser welding include: simple automation combined with modern computer technolo-gy, very low heat input to the weld, high productivity, high welding accuracy and low noise during laser operation. In this work, the sample meltings were prepared in a protective atmosphere varying the welding parameters – laser power, welding speed, or focus position. A total of 12 samples were prepared this way. The aim was to evaluate the shape and depth of the melting of the material for selected values of parameters. Based on this metallographic evaluation, the optimal welding parame-ters were selected for a pair of austenitic stainless steel tubes (X2CrNi19-11 and X5CrNiMo17-12-2) for fiber laser welding. Macrostructure and microstructure evaluations, microhardness tests and tensile tests were performed on these welded samples.

Keywords: steel, fiber laser, microhardness, weld, metallography
Grants and funding:

Slovak grant project No. KEGA 002TnUAD – 4/2019. This publication was created in the frame of the project: Advancement and support of R&D for “Centre for diagnostics and quality testing of materials“ in the domains of the RIS3 SK specialization, ITMS2014+:313011W442, based on the Operational Programme Integrated Infrastructure and funded from the European Regional Development Fund.

Received: October 7, 2020; Revised: December 24, 2020; Accepted: January 14, 2021; Prepublished online: February 10, 2021; Published: February 24, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bako¹ová D, Bako¹ová A. Experimental study of thin steel tubes welded by fiber laser. Manufacturing Technology. 2021;21(1):3-13. doi: 10.21062/mft.2021.012.
Download citation

References

  1. ZRAK, A., TOFIL, S., ©UTKA, J., MORAVEC, J. (2019). Impact of Technological Parameters of CO2 Laser Cutting on oxide adhesion forces on the Base Material. In: Manufacturing technology, Vol. 19, No. 6, pp. 1094 - 1099. DOI: 10.21062/ujep/423.2019/a/1213-2489/MT/19/6/1094. ISSN 1213-2489. Go to original source...
  2. HEYDARI, H., AKBARI, M. (2014). Investigating the effect of process parameters on the temperature field and mechanical properties in pulsed laser welding of Ti6Al4V alloy sheet using response surface methodology. In: Infrared Physics and Technology, Vol. 106. https://doi.org/10.1016/j.infrared.2020.103267. ISSN 1350-4495. Go to original source...
  3. LUKOVICS, I., MALACHOVÁ, M. (2007). Use of Laser in Engineering. In: Manufacturing Technology, Vol. 12, No. 13, pp. 26-31. ISSN 1213-2489.
  4. FARABI, N., CHEN, D.L., ZHOU, Y. (2011). Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints. In: Journal of Alloys and Compounds, Vol. 509, Is. 3, pp. 982-989. https://doi.org/10.1016/j.jallcom.2010.08.158. ISSN 0925-8388. Go to original source...
  5. LANDOWSKI, M., ¦WIERCZYÑSKA, A., ROGALSKI, G., FYDRYCH, D. (2020). Autogenous fiber laser welding of 316L austenitic and 2304 lean duplex stainless steels. In: Materials, Vol. 13, Is. 13, pp. 2930. DOI: 10.3390/ma13132930. ISSN 1996-1944. Go to original source...
  6. SHANKAR, V., GILL, T. P. S., MANNAN, S. L., SUNDARESAN, S. (2003). Solidification cracking in austenitic stainless steel welds. In: Sadhana, Vol. 28, Is. 3-4, pp. 359-382. https://doi.org/10.1007/BF02706438. ISSN 0973-7677. Go to original source...
  7. MOHAMMED, G.R., ISHAK, M., AQIDA, S.N., ABDULHADI, H.A. (2017). Effects of heat input on microstructure, corrosion and mechanical characteristics of welded austenitic and duplex stainless steels: A review. In: Metals, Vol. 7, Is. 2, pp. 39. https://doi.org/10.3390/met7020039. ISSN 2075-4701. Go to original source...
  8. KURYNTSEV, S.V., GILMUTDINOV, A.K. (2015). Welding of stainless steel using defocused laser beam. In: Journal of Constructional Steel Research, Vol. 114, pp. 305-313. DOI: 10.1016/j.jcsr.2015.08.004. ISSN 0143-974X. Go to original source...
  9. KURYNTSEV, S.V. (2019). Effect of heat treatment on the phase composition and corrosion resistance of 321 SS welded joints produced by a defocused laser beam. In: Materials, Vol. 12, Is. 22, pp. 3720. doi: 10.3390/ma12223720. ISSN 1996-1944. Go to original source...
  10. EL-BATAHGY, A.M. (1997). Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels. In: Materials letters, Vol. 32, Is. 2-3, pp. 155-163. https://doi.org/10.1016/S0167-577X(97)00023-2. ISSN 0167-577X. Go to original source...
  11. KUMAR, N., MUKHERJEE, M., BANDYOPADHYAY, A. (2017). Comparative study of pulsed Nd: YAG laser welding of AISI 304 and AISI 316 stainless steels. In: Optics & Laser Technology, Vol. 88, pp. 24-39. https://doi.org/10.1016/j.optlastec.2016.08.018. ISSN 0030-3992. Go to original source...
  12. BERRETTA, J. R., DE ROSSI, W., DAS NEVES, M.D.M., DE ALMEIDA, I. A., VIEIRA, N.D. (2007). Pulsed Nd: YAG laser welding of AISI 304 to AISI 420 stainless steels. In: Optics and Lasers in Engineering, Vol. 45, Is. 9, pp. 960-966. ISSN 0143-8166. Go to original source...
  13. KUMAR, N., MUKHERJEE, M., BANDYOPADHYAY, A. (2017). Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam. In: Optics & Laser Technology, Vol. 94, pp. 296-309. https://doi.org/10.1016/j.optlastec.2017.04.008. ISSN 0030-3992. Go to original source...
  14. SATHIYA, P., PANNEERSELVAM, K., ABDUL JALEEL, M.Y. (2012). Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. In: Materials & Design (1980-2015), Vol. 36, pp. 490-498. https://doi.org/10.1016/j.matdes.2011.11.028. ISSN 0261-3069. Go to original source...
  15. TSIRKAS, S. A., PAPANIKOS, P., KERMANIDIS, TH. (2003). Numerical simulation of the laser welding process in butt-joint specimens. In: Journal of materials processing technology, Vol. 134, Is. 1, pp. 59-69. https://doi.org/10.1016/S0924-0136(02)00921-4. ISSN 0924-0136. Go to original source...
  16. TAN, W., SHIN, Y.C. (2015). Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel. In: Computational Materials Science, Vol. 98, pp. 446 - 458. https://doi.org/10.1016/j.commatsci.2014.10.063. ISSN 0927-0256. Go to original source...
  17. SUDER, W. J., WILLIAMS, S. (2014). Power factor model for selection of welding parameters in CW laser welding. In: Optics & Laser Technology, Vol. 56, pp. 223-229. https://doi.org/10.1016/j.optlastec.2013.08.016. ISSN 0030-3992. Go to original source...
  18. OLABI, A.G., ALSINANI, F.O., ALABDULKARIM, A.A., RUGGIERO, A., TRICARICO, L., BENYOUNIS, K.Y. (2013). Optimizing the CO2 laser welding process for dissimilar materials. In: Optics and Lasers in Engineering, Vol. 51, Is. 7, pp. 832-839. https://doi.org/10.1016/j.optlaseng.2013.01.024. ISSN 0143-8166. Go to original source...
  19. BENYOUNIS, K. Y., OLABI, A.G., HASHMI, M. S. J. (2008). Multi-response optimization of CO2 la-ser-welding process of austenitic stainless steel. In: Optics & Laser Technology, Vol. 40, Is. 1, pp. 76-87. https://doi.org/10.1016/j.optlastec.2007.03.009. ISSN 0030-3992. Go to original source...
  20. ME©KO, J., ZRAK, A., MULCYZK, K., TOFIL, S. (2014). Microstructure analysis of welded joints after laser welding. In: Manufacturing technology, Vol. 14, Is. 3, pp. 355-359. DOI: 10.21062/ujep/x.2014/a/1213-2489/MT/14/3/355. ISSN 1213-2489. Go to original source...
  21. RADEK, N., ME©KO, J., ZRAK, A. (2014). Technology of laser forming. In: Manufacturing technology, Vol. 14, No. 3, pp. 428-431. DOI: 10.21062/ujep/x.2014/a/1213-2489/MT/14/3/428. ISSN 1213-2489. Go to original source...
  22. KRAUSS H., ZAEH, M. (2013). Investigations on Manufacturability and Process Reliability of Selective Laser Melting. In: Physics Procedia, Vol. 41, pp. 815-822. https://doi.org/10.1016/j.phpro.2013.03.153. ISSN 1875-3892. Go to original source...
  23. CHOWDHURYA, S., NIRSANAMETLAA, Y., MURALIDHARA, M., BAG, S., PAUL, C.P., BINDRACD, K.S. (2020). Identification of modes of welding using parametric studies during ytterbium fiber laser welding. In: Journal of Manufacturing Processes, Vol. 57, pp. 748-761. https://doi.org/10.1016/j.jmapro.2020.07.038. ISSN 1526-6125. Go to original source...
  24. BENYOUNIS, Y., OLABI, A.G., HASHMIH, M.S.J. (2008). Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. In: Optics & Laser Technology, Vol. 40, Is. 1, pp. 76-87. ttps://doi.org/10.1016/j.optlastec.2007.03.009. ISSN 0030-3992. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.