Manufacturing Technology 2020, 20(3):293-299 | DOI: 10.21062/mft.2020.056

Microstructure and Selected Properties of Si3N4 + SiC Composite

Zuzana Gábriąová, Pavol ©vec, Alena Brusilová
Institute of Technologies and Materials, Faculty of Mechanical Engineering, STU Bratislava, Námestie slobody 17, 812 31 Bratislava. Slovak Republic

The effects of strengthening phase in particulate ceramic composites on their properties were studied in presented paper. The experimental materials were a monolithic Si3N4 and particulate ceramic composites consisting of Si3N4 matrix with different additions of the SiC strengthening phase (10 and 20 vol.%). The microstructure, density, hardness and fracture toughness of Si3N4 + SiC ceramic composite materials were compared with monolithic Si3N4 based ceramic material. The addition of SiC particles into the Si3N4 based matrix does not positively influence the phase transformation from ?-Si3N4 to ?-Si3N4 in Si3N4 + SiC ceramic composite materials, but it affects the growth of prismatic ?-Si3N4 grains and contributes to the creation of fine-grained microstructure. The increase of SiC strengthening phase portion slightly increases relative density of Si3N4 + SiC ceramic composite materials. The hardness of ceramic materials increased from 14.48 GPa at monolithic Si3N4 ceramics to 16.99 GPa at ceramic composite with 20 vol.% SiC. The highest fracture toughness value of 8.30 MPa.m1/2 was achieved for monolithic Si3N4 ceramics, the lowest value of 7.09 MPa.m1/2 was achieved for ceramic composite with 20 vol.% SiC.

Keywords: silicon nitride, strengthening phase, microstructure, mechanical properties
Grants and funding:

VEGA 1/0298/18 research project.
UVP STU Bratislava ITMS 26240220084.

Received: May 1, 2020; Revised: August 5, 2020; Accepted: August 5, 2020; Prepublished online: September 3, 2020; Published: September 7, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gábriąová Z, ©vec P, Brusilová A. Microstructure and Selected Properties of Si3N4 + SiC Composite. Manufacturing Technology. 2020;20(3):293-299. doi: 10.21062/mft.2020.056.
Download citation

References

  1. ZENG, W., GAN, X., LI, Z., ZHOU, K. (2016). The preparation of silicon nitride ceramics by gelcasting and pressureless sintering. In: Ceram. Int., 42, pp. 11593 - 11597. ISSN 0272-8842. Go to original source...
  2. BOCANEGRA-BERNAL, M.H., MATOVIC, B. (2010). Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures. In: Mater. Sci. Eng.: A, 527, pp. 1314 - 1338. ISSN 0921-5093. Go to original source...
  3. KUMAR, A., SUDARSAN GHOSH, S., ARAVINDAN, S. (2017). Grinding performance improvement of silicon nitride ceramics by utilizing nanofluids, In: Ceramics International, Vol. 43, Iss. 16, pp. 13411 - 13421. ISSN 0272-8842. Go to original source...
  4. DAUBERA, C., VANNUCCHI DE CAMARGOA, F., KOPP ALVESA, A., PAVLOVIC, A., FRAGASSA, C., PÉREZ BERGMANNA, C. (2019). Erosion resistance of engineering ceramics and comparative assessment through Wiederhorn and Evans equations. In: Wear, Vol. 432-433, 15, pp. 432 - 433. ISSN 0043-1648. Go to original source...
  5. POPOV, V.L. (2018). Adhesive wear: Generalized Rabinowicz criteria. In: Facta Univ.- Ser. Mech. Eng., 6, pp. 29 - 39. ISSN 2335-0164 Go to original source...
  6. MORE, S.R., BHATT, D.V., MENGHANI, J.V. (2017). Recent research status on erosion wear - anoverview. In: Mater. Today, 4, pp.257 - 266. ISSN 1369-7021. Go to original source...
  7. YURKOV, A., MALAKHO, A., AVDEEV, V. (2017). Corrosion behavior of silicon nitride bonded silicon carbide refractory material by molten copper and copper slag. In: Ceramics International, Vol. 43, Iss. 5, pp. 4241 - 4245. ISSN 0272-8842. Go to original source...
  8. GÁBRI©OVÁ, Z., BRUSILOVÁ, A., ©VEC, P. (2019). Study of sintering parameters and sintering additives effect on selected properties of silicon nitride. In: Manufacturing technology. Vol. 19 (2), pp. 222-227. ISSN 1213-2489. Go to original source...
  9. NASLAIN, R. (2004). Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors. In: Composites Science and Technology, 64, pp. 155 - 170. ISSN 0266-3538. Go to original source...
  10. CHEN, W., WANG, K., GAO, Y., HE, N., XIN, H., LI, H. (2018). Investigation of tribological properties of silicon nitride ceramic composites sliding against titanium alloy under artificial seawater lubricating condition. In: International Journal of Refractory Metals and Hard Materials, Vol. 76, pp. 204 - 213. ISSN 0263-4368. Go to original source...
  11. CHEN, W., ZHANG, D., AI, X., LV, Z.L., LIU, Q.J. (2016). Preparation of Si3N4-hBN ceramics by constant pressure, hot pressing and friction behavior analysis. In: J.Shaanxi Univ. Sci., Vol. 34, Iss. 5, pp. 69 - 76. ISSN 1000-5811.
  12. BABA, S., GOTO, T., CHO, S., SEKINO, T. (2018). Microstructure and mechanical properties of TiN dispersed Si3N4 ceramics via in-situ nitridation of coarse metallic Ti. In: Építőanyag - JSBCM, Vol. 70, No. 6, pp. 195 - 203. ISSN 2064-4477. Go to original source...
  13. GE, P., SUN, K., LI, A., PINGJI, G. (2018). Improving the electrical and microwave absorbing properties of Si3N4 ceramics with carbon nanotubefibers. In: Ceramics International, 44, pp. 2727 - 2731. ISSN 0272-8842. Go to original source...
  14. KOVALČÍKOVÁ, A., BALÁZSI, CS., DUSZA, J., TAPASZTÓ, O. (2012). Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite, In: Ceramics International, Vol. 38, Iss. 1, pp. 527 - 533. ISSN 0272-8842. Go to original source...
  15. CHEN, L., YIN, X., FAN, X., CHEN, M., MA, X., CHENG, L., ZHANG, L. (2015). Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites. In: Carbon, Vol. 95, pp. 10 - 19. ISSN 0008-6223. Go to original source...
  16. TAPASZTÓ, O., PUCHY, V., HORVÁTH, Z.E., FOGARASSY, Z., BÓDIS, E., KÁROLY, Z., BALÁZSI, K., DUSZA, J., TAPASZTÓ, L. (2019). The effect of graphene nanoplatelet thickness on the fracture toughness of Si3N4 composites. In: Ceramics International, Vol. 45, Iss. 6, pp. 6858 - 6862. ISSN 0272-8842. Go to original source...
  17. BALKO, J., HVIZDO©, P., DUSZA, J., BALÁZSI, CS., GAMCOVÁ, J. (2014). Wear damage of Si3N4-graphene nanocomposites at room andelevated temperatures. In: Journal of the European Ceramic Society, 34, pp. 3309 - 3317. ISSN 0955-2219. Go to original source...
  18. TAPASZTÓ, O., BALKO, J., PUCHY, V., KUN, P., DOBRIK, G., FOGARASSY, Z., HORVÁTH, Z.E., DUSZA, J., BALÁZSI, K., BALÁZSI, CS., TAPASZTÓ, L. (2017). Highly wear-resistant and low-friction Si3N4 composites by addition of graphene nanoplatelets approaching the 2D limit. In: Scientific Reports, Vol. 7, pp. 1 - 8. ISSN 2045-2322. Go to original source...
  19. DUSZA, J., MORGIEL, J., DUSZOVÁ, A., KVETKOVÁ, L., NOSKO, M., KUND, P., BALÁZSI, CS. (2012). Microstructure and fracture toughness of Si3N4 + graphene plateletcomposites, In: Journal of the European Ceramic Society, 32, pp. 3389 - 3397. ISSN 0955-2219. Go to original source...
  20. HWANG, K., KIM, CH., AUH, K., CHEONG, D., NIIHARA, K. (1997). Influence of SiC Particle Size and Drying Method on Mechanical Properties and Microstructure of Si3N4/SiC Nanocomposite. In: Materials Letters, 32, pp. 251 - 257. ISSN 0167-577X. Go to original source...
  21. SASAKI, G., NAKASAKE, H., SUGANUMA, K., FUJITA, T., NIIHARA, K. (1992). Mechanicial Properties and Microstructure of Si3N4 Matrix Composite with Nano-meter Scale SiC Particles. In: Journal of the Ceram. Society of Japan, 100, pp. 536 - 540. ISSN 1348-6535. Go to original source...
  22. MENGLONG LONG, YONG LI, HAIXIA QIN, WENDONG XUE, JUNHONG CHEN, JIALIN SUN, R. VASANT KUMAR. (2016). Formation mechanism of Si3N4 in reaction-bonded Si3N4-SiC composites. In: Ceramics International, Vol. 42, Iss. 15, pp. 16448 - 16452. ISSN 0272-8842. Go to original source...
  23. WU, J., ZHANG, Y., XU, X., LAO, X., LI, K., XU, X. (2016). Fabrication and properties of in-situ mullite-bonded Si3N4/SiC composites for solar heat absorber. In: Materials Science and Engineering: A, Vol. 652, pp. 271 - 278. ISSN 0921-5093. Go to original source...
  24. YANG, J.F., OHJI, T., SEKINO, T., LI, CH.L., NIIHARA, K. (2001). Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite. In: Journal of the European Ceramic Society, 21, pp. 2179 - 2183. ISSN 0955-2219. Go to original source...
  25. HIRANO, T., NIIHARA, K. (1995). Microstructure and mechanical properties of Si3N4/SiC composites. In: Materials Letters, 22, pp. 249 - 254. ISSN 0167-577X. Go to original source...
  26. NAKAMURA, M., HIRAO, K. (2003). Wear Behavior of -Si3N4 Ceramics. In: Wear, 254, pp. 94 - 102. ISSN 0043-1648. Go to original source...
  27. POORTEMAN, M., DESCAMPS, P., CAMBIER, F., PLISNIER, M., CANONNE, V., DESCAMPS, J.C. (2003). Silicon nitride/silicon carbide nanocomposite obtained by nitridation of SiC: fabrication and high temperature mechanical properties. In: Journal of the European Ceramic Society, 23, pp. 2361 - 2366. ISSN 0955-2219. Go to original source...
  28. YANG, J.F., CHO, Y.H., SEKINO, T., NIIAHARA, K. (1998). Fabrication and Mechanical Properties of Si3N4/SiC Nanocompoisites under Pressureless Sintering. In: Journal of the Japan Society of Powder and Powder Metallurgy, Vol. 45, No. 12, pp. 1172 - 1177. ISSN 1880-9014. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.