Manufacturing Technology 2018, 18(2):295-298 | DOI: 10.21062/ujep/94.2018/a/1213-2489/MT/18/2/295

The Effect of Production Process on Properties of FeAl20Si20

Kateřina Nová, Pavel Novák, Tomáš Vanka, Filip Průša
University of Chemistry and Technology, Prague, Department of Metals and Corrosion Engineering, Technická 5, Praha 6, Czech Republic

This work deals with comparison of two production methods on microstructure, phase composition and mechanical properties of intermetallic based on Fe-Al-Si which are appropriate materials for high-temperature applications. A conventional metallurgical process - casting - was compared with a novel processing method, based on ultra-high energy mechanical alloying (MA) and spark plasma sintering (SPS) in order to prepare FeAl20Si20 (in wt. %) alloy. The influence of production route was observed. Via MA + SPS can produce a material of the same phase composition but with significantly better mechanical properties. Negligible porosity, fine-grained and homogeneous structure are the reasons.

Keywords: Intermetallics, Mechanical properties, Powder metallurgy, Spark Plasma Sintering

Published: April 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nová K, Novák P, Vanka T, Průša F. The Effect of Production Process on Properties of FeAl20Si20. Manufacturing Technology. 2018;18(2):295-298. doi: 10.21062/ujep/94.2018/a/1213-2489/MT/18/2/295.
Download citation

References

  1. SASAKI, T.T.; OHKUBO, T.; HONO, K. (2009). Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. In: Acta Materialia, Vol. 57, No. 12, pp. 3529-3538. Go to original source...
  2. KNAISLOVA, A.; ŠIMŮNKOVÁ, V.; NOVÁK, P.; PRŮŠA, F. (2017). High-Temperature Behaviour of Ti-Al-Si Alloys Prepared by Spark Plasma Sintering. In: Manufacturing Technology, Vol. 17, No. 5, pp. 733-738. Go to original source...
  3. YAMAGUCHI, M.; INUI, H.; ITO, K. (2000). High-temperature structural intermetallics. In: Acta Materialia, Vol. 48, No. 1, pp. 307-322. Go to original source...
  4. HADEF, F. (2016). Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review. In: Journal of Magnetism and Magnetic Materials, Vol. 419, pp. 105-118. Go to original source...
  5. HAGHIGHI, S.E.; JANGHORBAN, K.; IZADI, S. (2010). Structural evolution of Fe-50at.% Al powders during mechanical alloying and subsequent annealing processes. In: Journal of Alloys and Compounds, Vol. 495, No. 1, pp. 260-264. Go to original source...
  6. COUPERTHWAITE, R.A.; ET. AL. (2015). Effect of Processing Route on the Microstructure and Properties of an Fe-al Alloy with Additions of Precious Metal. In: Materials Today: Proceedings, Vol: 2, No. 7, pp. 3932-3942. Go to original source...
  7. STOLOFF, N.S. (1998). Iron aluminides: present status and future prospects. In: Materials Science and Engineering: A, Vol. 258, No. 1-2, pp. 1-14. Go to original source...
  8. SURYANARAYANA, C.; KOCH, C. C. (2000). Nanocrystalline materials - Current research and future directions. In: Hyperfine Interactions, Vol. 130, No. 1, pp. 5. Go to original source...
  9. MEYERS, M.A.; MISHRA, A.; BENSON, D. J. (2006). Mechanical properties of nanocrystalline materials. In: Progress in Materials Science, Vol. 51, No. 4, pp. 427-556. Go to original source...
  10. KRASNOWSKI, M.; GRABIAS, A.; KULIK, T. (2006). Phase transformations during mechanical alloying of Fe-50% Al and subsequent heating of the milling product. In: Journal of Alloys and Compounds, Vol. 424, No. 1, pp. 119-127. Go to original source...
  11. PRŮŠA, F., ET AL. (2015). Structure and mechanical properties of Al-Si-Fe alloys prepared by short-term mechanical alloying and spark plasma sintering. In: Materials & Design, Vol. 75, pp. 65-75. Go to original source...
  12. FARAHAT, A. I. Z.; EL-BADRY, S. A. (2009). Effect of high temperature deformation and different cooling rates on microstructure and mechanical properties of Fe-Al alloys. In: Materials Science and Engineering: A, Vol. 525, No. 1-2, pp. 48-54. Go to original source...
  13. KUČERA, V.; PRŮŠA, F.; VOJTĚCH, D. (2016). Processing of Al-Fe Scraps by Powder Metallurgy. In: Manufacturing Technology, Vol. 16, No. 4, pp. 726-732. Go to original source...
  14. NOVÁK, P.; MORAVEC, H.; VOJTĚCH, V.; KOPEČEK, J. (2017). Powder-metallurgy preparation of Ni-Ti shape-memory alloy using mechanical alloying and spark plasma sintering. In: Materiali in Technologije, Vol. 51, pp. 141-144. Go to original source...
  15. SKIBA, T., ET AL. (2010). Mechanical properties of spark plasma sintered FeAl intermetallics. In: Intermetallics, Vol. 18, No. 7, pp. 1410-1414. Go to original source...
  16. RUDINSKY, S., ET AL. (2015). Spark plasma sintering of an Al-based powder blend. In: Materials Science and Engineering: A, Vol. 621, pp. 18-27. Go to original source...
  17. PRŮŠA, F.; VOJTĚCH, D.; BERNATIKOVÁ, A.; DVORSKÝ, D. (2015). Mechanical Alloying: How to Improve Properties of Aluminium Alloys. In: Manufacturing Technology, Vol. 15, No. 6, pp. 1036-1043. Go to original source...
  18. KNAISLOVA, A.; ŠIMŮNKOVÁ, V.; NOVÁK, P.; PRŮŠA, F.; CYGAN, S.; JAWORSKA, L. (2017). The Optimization of Sintering Condition of Ti-Al-Si Alloy. In: Manufacturing Technology, Vol. 17, No. 4, pp. 483-488. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.