Manufacturing Technology 2017, 17(2):151-157 | DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/2/151

Dynamical Analysis of a Cable Manipulator Using Multibody Approaches

Radek Bulín1, Michal Hajľman1, Pavel Polach2, Zbyněk ©ika3, Jan Zavřel3
1 Department of Mechanics, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306 14 Plzeň, Czech Republic
2 NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia Univerzitní 22, 306 14 Plzeň, Czech Republic
3 Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 166 07 Praha

This paper deals with the creation of a computational model of a particular cable manipulator composed of a rigid manipulator with three degrees of freedom and a platform driven by four fibers. Each fiber is led over a pulley and is driven by a linear motor, which can be controlled. The multibody dynamics approach is a suitable way in order to create the manipulator model. The most common cable modelling techniques are summarized in this paper and then the computational model of the cable manipulator QuadroSphere is created using MSC.Adams software. The computational model verification is done using the modal analysis of linearized model and the experimental modal analysis on the real set up. Further results of various numerical simulations are presented and their utilization is discussed.

Keywords: Cable Manipulator, Multibody Dynamics, Cable Modelling, QuadroSphere

Published: April 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bulín R, Hajľman M, Polach P, ©ika Z, Zavřel J. Dynamical Analysis of a Cable Manipulator Using Multibody Approaches. Manufacturing Technology. 2017;17(2):151-157. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/2/151.
Download citation

References

  1. BERZERI, M., SHABANA, A.A. (2000). Development of simple models for the elastic force in the absolute nodal co-ordinate formulation. In: Journal of Sound and Vibration, Vol. 235, No. 4, pp. 539 - 565. Academic Press Ltd, London. Go to original source...
  2. BLATNICKÝ, M., DI®O, J., TIMO©ČUK, M. (2016). Design of a three-finger robot manipulator. In: Manufacturing Technology, Vol. 16, No. 3, pp. 485 - 489. Institute of Technology and Production Management University of J.E. Purkyne, Ústí nad Labem. Go to original source...
  3. BULÍN, R., HAJ®MAN, M. (2014). On the Modelling of Contact Forces in the Framework of Rigid Body Dynamics. In: Manufacturing Technology, Vol. 14, No. 2, pp. 136 - 141. Institute of Technology and Production Management University of J.E. Purkyne, Ústí nad Labem.
  4. HAJ®MAN, M., BULÍN, R., POLACH, P. (2015). Nonlinear analysis of the cable-pulley interaction. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015 (J. M. Font-Llagunes, (Ed.)), pp. 554 - 564. International Center for Numerical Methods in Engineering (CIMNE), Barcelona.
  5. HAJ®MAN, M., BULÍN, R., ©IKA, Z., SVATO©, P. (2016). Usage of the particle swarm optimization in problems of mechanics. In: Applied and Computational Mechanics, Vol. 10, No. 1, pp. 15 - 26. University of West Bohemia, Pilsen.
  6. JALÓN, J.G., BAYO, E. (1993). Kinematic and Dynamic Simulation of Multibody Systems - the Real-Time Challenge. Springer-Verlag, New York.
  7. JÓZWIK, J., KURIC, I., OSTROWSKI, D., DZIEDZIC, K. (2016). Industrial Robot Accuracy Testing with QC20-W Ballbar Diagnostic System. In: Manufacturing Technology, Vol. 16, No. 3, pp. 519 - 524. Institute of Technology and Production Management University of J.E. Purkyne, Ústí nad Labem. Go to original source...
  8. KAMMAN, J., HUSTON, R. (2001). Multibody dynamics modeling of variable length cable systems. In: Multibody System Dynamics, Vol. 5, pp. 211 - 221. Kluwer Academic Publishers, Netherlands. Go to original source...
  9. NOVAK-MARCINCIN, J., JANAK, M., TAKAC, D. (2014). Computer Design of Robot ABB IRB 140 Transport System from Manufacturing Point of View. In: Manufacturing Technology, Vol. 14, No. 1, pp. 79 - 84. Institute of Technology and Production Management University of J.E. Purkyne, Ústí nad Labem. Go to original source...
  10. PLECHÁČEK, J. (2015). Modelování a řízení poddajných mechanismů robotů. Master thesis, Czech Technical University in Prague, Prague.
  11. POLACH, P. (2013). Utilization of Multibody Simulations at the Trolleybus Development. In: Manufacturing Technology, Vol. 13, No. 4, pp. 515 - 520. Institute of Technology and Production Management University of J.E. Purkyne, Ústí nad Labem. Go to original source...
  12. POLACH, P., HAJ®MAN, M., ©IKA, Z., ČERVENÁ, O., SVATO©, P. (2014). Influence of the mass of the weight on the dynamic response of the asymmetric laboratory fiber-driven mechanical system. In: Applied and Computational Mechanics, Vol. 8, No. 1, pp. 75 - 90. University of West Bohemia, Pilsen.
  13. POLACH, P., HAJ®MAN, M., VÁCLAVÍK, J., ©IKA, Z., VALÁ©EK, M.. (2015). Investigation of a laboratory mechanical system with fiber and pulley. In: International Journal of Dynamics and Control, Vol. 3, No. 1, pp. 78 - 86. Springer-Verlag, Berlin. Go to original source...
  14. SHABANA, A.A. (2005). Dynamics of Multibody Systems. Third Edition. Cambridge University Press, Cambridge. Go to original source...
  15. SHABANA, A.A., YAKOUB, R.Y., (2001): Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory. In: Journal of Mechanical Design, Vol. 123, pp. 606 - 613. ASME, New York. Go to original source...