Manufacturing Technology 2016, 16(4):771-777 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/4/771

The Indentation Size Effect (ISE) and the Speed of the Indenter Penetration into Test Piece

Jozef Petrík, Pavol Palfy, Peter Blaško, Lenka Girmanová, Milan Havlík
Faculty of Metallurgy, Technical University of Košice. Letná 9, 042 00 Košice Slovakia

The aim of the submitted paper is to study the influence of the speed of the penetration of the indenter into the test piece ranging from 0.302 μm s-1 to 1.089 μm s-1 and applied load ranging from 10 g to 100 g on measured values of micro-hardness. Whereas certified reference material with defined specified hardness and its uncertainty was used as a test piece, the measurement involved indirect calibration of the tester. The influence of observed factors on measured value of the micro-hardness was evaluated by Meyer's index n, PSR method and by Analysis of Variance (ANOVA). The influence of the load on the measured value of micro-hardness is statistically significant and the relationship between applied load and micro-hardness manifests "reverse" ISE. The velocity has statistically significant effect on the micro-hardness. Meyer's index on average decreases with increasing of the speed.

Keywords: Micro-hardness, ISE, Speed of the indenter in the test piece, Load

Published: August 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Petrík J, Palfy P, Blaško P, Girmanová L, Havlík M. The Indentation Size Effect (ISE) and the Speed of the Indenter Penetration into Test Piece. Manufacturing Technology. 2016;16(4):771-777. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/4/771.
Download citation

References

  1. MARTINOVSKÝ, M., MÁDL, J. (2015). Effect of Different Modifiers and Heat Treatment on Structure, Hardness and Microhardness of AlSi7Mg0.3 Alloy. In: Manufacturing Technology, Vol. 15, No. 4, pp. 604-610. Go to original source...
  2. ŤAVODOVÁ, M., KALINCOVÁ, D., KAŠTAN, R. (2016). The Research of Options for the Innovation Heat Treatment of the Tools for Coinage in Order to Increase their Lifetime. In: Manufacturing Technology, Vol. 16, No. 1, pp. 274-280. Go to original source...
  3. ŽIHALOVÁ, M., KALINCOVÁ, D., CAIS, J. (2015). Microstructural Analysis of Nickel Influence in Alsi10mgmn Alloy with Increased Iron Level. In: Manufacturing Technology, Vol. 15, No. 4, pp. 743-748. Go to original source...
  4. SANGWAL, K. SUROWSKA, B., BŁAZIAK, P. (2002). Analysis of the indentation size in the microhardness measurement of some cobalt-based alloys. In: Materials Chemistry and Physics, Vol. 77, No. 2, pp. 511-520. Go to original source...
  5. KORBA, P., PIĽA, J., FŐZŐ, L., CIBEREOVÁ, J. (2014). The use of visualization in aircraft design nodes by using CAX systems - 2014. In: SGEM 2014 : 14th international multidiscilinary scientific geoconference : GeoConference on Informatics, Geoinformatics and Remote Sensing : conference proceedings : volume 1: 17-26, June, 2014, Albena, Bulgaria. - Sofia : STEF92 Technology Ltd., 2014 pp. 399-406.
  6. ŠČUREK, R., VÁLEK, D. (2014). Method of selecting the most important power lines in a transmission and distribution network, In: Przeglad elektrotechniczny, SIGMA-NOT, 11/2014, Poland, pp.152-1554.
  7. DAVID, J., ŠVEC, P., FRISCHER, R. (2013). Podpora údržby a řízení technologie bramového kontilití, In: METAL 2013, 22nd International Conference on Metallurgy and Materials, May 15th - 17th 2013, Hotel Voronez I, Brno Czech Republic, pp. 1650-1656.
  8. BUJNA, M., KOTUS, M., PRÍSTAVKA, M., FÖLDEŠIOVÁ, D. (2012). Analysis of hazard using FMEA. In: Technika v technológiách agrosektora 2012. Zborník vedeckých prác - Technics in agrisector Technologies, Nitra, SPU Nitra, pp. 32-35.
  9. KRÁLIKOVÁ, R., PAULIKOVÁ, A., WESSELY, E. (2006). Modelling of production cycle for mechanical engineering processes - 2006. In: Industrial engineering - adding innovation capacity of labour force and entrepreneur. - Tallinn : University of technology, 2006, pp. 203-206.
  10. ISO 10 012:2003 Measurement management systems - Requirements for measurement processes and measuring equipment.
  11. International Vocabulary of Basic and General Terms in Metrology (1993). ISO. Geneva.
  12. VELES, P. (1985). Mechanical properties and testing of metals. Alfa/SNTL, pp. 307-320.
  13. PETRÍK, J., ŠOLC, M., MIKLOŠ, V. Applied Load and Calibration of the Hardness Tester (2014) In: Manufacturing Technology, Vol. 14, No. 2, pp. 228-234. Go to original source...
  14. SANGWAL, K. (2000), On the reverse indentation size effect and microhardness measurement of solids. In: Materials Chemistry and Physics. Vol. 63, No. 2, pp. 145-152. Go to original source...
  15. STN EN ISO 6507-1:2005 Metallic materials. Vickers hardness test. Part 1: Test method.
  16. CHAKRABORTY, R. et al. (2010). Loading Rate Effect on Nanohardness of Soda-Lime-Silica, In: Metallurgical and Materials Transactions A, Vol. 41, No. 5, pp.1301-1312. Go to original source...
  17. GONG, J., WU. J., GUAN. ZH. (1999). Examination of the Indentation Size Effect in Low-load Vickers Hardness Testing of Ceramics, In: Journal of the European Ceramic Society. Vol. 19, No. 15, pp. 2625 - 2631. Go to original source...
  18. REN. X. J., HOOPER, R. M., GRIFFITHS, C. (2003). Indentation size effect in ceramics: Correlation with H/E, In: Journal of Materials Science Letters. Vol. 22 No. 15, pp. 1105-1106. Go to original source...
  19. NAVRÁTIL, V., NOVOTNÁ, J. (2009). Some problems of microhardness of metals. In. Journal of Applied Mathematics. Vol. 2, No. 3, pp. 241-244.
  20. EA-10/16 EA (2004) Guidelines on the Estimation of Uncertainty in Hardness Measurements. Annex Guideline to the Evaluation of the Uncertainty of the Brinell and the Vickers Measuring Method.
  21. STN EN ISO 6507-2:2005 Metallic materials. Vickers hardness test. Part 2: Verification and calibration of testing machines.
  22. CHANYA, CH., POJJANUT, B., PAITOON, D. (2009). Effect of Indentation Load and Time on Knoop and Vickers Microhardness Tests for Namel and Dentic, In: Materials Research, Vol. 12, No. 4, pp. 473-476. Go to original source...
  23. LI, H., BRADT, R. C. (1993). The microhardness indentation load/size effect in rutile and cassiterite single crystals. In: Journal of Materials Science. Vol. 28, No. 4, pp. 917-926. Go to original source...
  24. MICHELS, B. D., FRISCHAT, G. H. (1982). Microhardness of chalcogenide glasses of the system Se-Ge-As. In: Journal of Materials Science. Vol. 17, No. 2., pp. 329-334. Go to original source...
  25. KIM, H., KIM. T. (2002). Measurement of hardness on traditional ceramics. In: Journal of the European Ceramic Society, Vol. 22, No. 9-10, pp. 1437-1445. Go to original source...
  26. KONAR, R., PATEK, M. (2016) Prediction of Hardness and Residual Stresses of Dissimilar Weld Joint, In: Manufacturing Technology, Vol. 16, No. 2, pp. 365-371. Go to original source...
  27. MACHAKA, R. et al.. Advances in Materials Science and Engineering. 2011. [online]. [cited 29 November 2012]. Available from: http://www.hindawi.com/journals/amse/2011/539252/
  28. PETRÍK, J. (2014). Micro-hardness of heat treated carbon steel. In: Materials Science - Medžiagotyra, Vol. 20, No. 1, pp. 21-24. Go to original source...
  29. McDONALD, J. H. Handbook of Biological Statistics. [cited 07 May 2015]. Available from: http://www.biostathandbook.com/multipleregression.html
  30. AAKRE, A. (2004). Statistical functions and tools in Microsoft Excel. Trondheim, [cited 18 May 2015]. Available from: http://trafikk.info/evu_tt_oslo_2007/litteratur/excel_all_statistical_functions_and_tools_a5.pdf