Manufacturing Technology 2016, 16(3):519-524 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/3/519

Industrial Robot Accuracy Testing with QC20-W Ballbar Diagnostic System

Jerzy Józwik1, Ivan Kuric2, Dawid Ostrowski3, Krzysztof Dziedzic4
1 Department of Production Engineering, Mechanical Engineering Faculty, Lublin University of Technology, 36Nadbystrzycka Street, 20-816 Lublin, Poland
2 University of ®ilina, Faculty of Mechanical Engineering, Department of Automation and Production Systems, Univerzitnį Street 1,010-26 ®ilina, Slovakia
3 The State School of Higher Education, The Institute of Technical Sciences and Aviation, 54 Pocztowa Street, 22-100 Che³m, Poland
4 Fundamentals of Technology Faculty, Lublin University of Technology, 38Nadbystrzycka Street, 20-618 Lublin, Poland

An important characteristic of industrial robots is their accuracy. It is of particularly importance in high-precision tasks, e.g. mounting or machining of elements. In order to meet the requested quality demands for products, as well as appropriate working conditions, it is absolutely essential to regularly inspect the technical condition of robots, e.g. their accuracy.The following paper aims at identification of accuracy errors of an industrial robot MOTOMAN HP20. The selected measuring method was the roundness test with the use of the telescopic, kinematic QC20W - Ballbar. The paper presents the methodology of experimental tests. The influence of the radius of the interpolation circle, as well as the influence of the set motion speed on the value of chosen accuracy errors was determined. The results were presented graphically and analysed.

Keywords: diagnostic, accuracy, robots, ballbar system

Published: June 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Józwik J, Kuric I, Ostrowski D, Dziedzic K. Industrial Robot Accuracy Testing with QC20-W Ballbar Diagnostic System. Manufacturing Technology. 2016;16(3):519-524. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/3/519.
Download citation

References

  1. ABDERRAHIM M., KHAMIS A., GARRIDO S., MORENO L. (2006). Accuracy and Calibration Issues of Industrial Manipulators. In: Industrial Robotics-Programming, Simulation and Applications (Low Kin Huat, (Ed.)), pp. 131-146. pIV pro literature Verlag Robert Mayer-Scholz, Mammendorf, Germany. Go to original source...
  2. ALICI G., SHIRINZADEH B. (2005). A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. In: Mechanism and Machine Theory, Vol. 40, No. 8, pp. 879-906, Australia. Go to original source...
  3. ANGELIDIS A., VOSNIAKOS G. CH. (2014). Prediction and Compensation of Relative Position Error along Industrial Robot End-Effector Paths. In: International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 1, pp. 63-73, Greece. Go to original source...
  4. BILEK O., SAMEK D., KNEDLOVĮ J. (2013). Offline Programming for Robotic Deburring Process of Aluminium Wheels. In: Manufacturing Technology. Vol. 13, No. 3, pp. 269-275. Go to original source...
  5. JÓZWIK J., KURIC I., SĮGA M., LONKWIC P. (2014). Diagnostics of CNC Machine Tools in Manufacturing Process with Laser. Interferometer Technology. In: Manufacturing Technology, Vol.14, No. 1, pp. 23-30. Go to original source...
  6. JÓZWIK J., LONKWIC P., SĮGA M., KURIC I. (2014). R-Test Static Measurement of The 5-axis CNC Machining Centre Rotary Axis Kinematic Centre Error. In: Manufacturing Technology, Vol. 14, No. 2, pp. 186-193. Go to original source...
  7. JÓZWIK J., OSTROWSKI D., WIECZOREK M., CZWARNOWSKI M. (2015). Evaluation of accuracy and positioning repeatability of an industrial robot. In: Advanced technologies in designing, engineering and manufacturing: Research problems (T. Jachowicz, M. K³onica, (Ed.)), pp. 146-156. Prefekta info Renata Markisz, Lublin, Poland.
  8. JÓZWIK J., PIE¦KO P., KRAJEWSKI G. (2010). Evaluation of QC10 ballbar diagnostics method for CNC machine. In: Maintenance and Reliability, Vol. 47, No. 3, pp.10.
  9. KIERSZTYN M., WOLSZCZAK P., P£ASKA S. (2014). Automatyczna kontrola pozycjonowania robota w elastycznym gnie¼dzie wytwarzania z zastosowaniem technik wizyjnych. In: Mechanik, Vol. 87, No. 8-9, pp. 281-290.
  10. MAYER K., PEXA M., PAVLU J. (2012). Impact of technical diagnostics interval on machinery maintenance. In: Manufacturing Technology, Vol. 12, No 12, pp. 42-46. Go to original source...
  11. NOVAK-MARCINCIN J., JANAK M., TAKAC D. (2014). Computer Design of Robot ABB IRB 140 Transport System from Manufacturing Point of View. In: Manufacturing Technology, Vol.14, No. 1, pp.79-84. Go to original source...
  12. NUBIOLA A., BONEV I. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. In: Robotics and Computer - Integrated Manufacturing, Vol. 29, No. 1, pp. 236-245. Go to original source...
  13. SLAMANI M., JOUBAIR A., BONEV I. (2015). A comparative evaluation of three industrial robots using three reference measuring techniques, Industrial Robot. In: An International Journal, Vol. 42, No. 6, pp. 572-585. Go to original source...
  14. SLAMANI M., NUBIOLA A., BONEV I. (2012). Assessment of the positioning performance of an industrial robot. In: Industrial robot: An International Journal, Vol. 39 No. 1, pp. 57-68. Go to original source...
  15. YOUNG K., PICKIN C. G. (2000). Accuracy assessment of the modern industrial robot. In: Industrial robot: An International Journal, Vol. 39, No. 6, pp. 427-436. Go to original source...
  16. ZHENHUA W., HUI X., GUODONG CH., RONGCHUAN S., SUN L. (2014). A distance error based industrial robot kinematic calibration method. In: Industrial Robot: An International Journal, Vol. 41, No. 5, pp. 439-446. Go to original source...
  17. Renishaw Ballbar.
  18. http://www.robotraders.co.uk/sites/default/files/styles/uc_product_full/public/HP20_196x400_0.png(24.07.2015)