Manufacturing Technology 2016, 16(2):380-384 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/380

Analysis of Heat Transfer Conditions in the Sand and Metal Moulds and Their Effect on the Solidification of the Casting

Jiri Machuta, Iva Nova
Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic

The article deals with heat transfer in the casting - mould system. There are characteristics of sand and metal mould. The sand mould is a dispersion system, respectively - a capillary-porous body. In sand mould are heat transfers shared by all three ways: conduction, convection and radiation. These individual elementary processes of heat transfer are only theoretical significance, as very often processes are taking place simultaneously in different intensities or interact. The maximum effects of these processes are in a certain temperature range. From temperature 200 °C dominates conduction heat transfer. Between of temperatures 200 to 600 ° C is the effective convection heat transfere. At higher temperatures above 600 ° C prevails radiation heat transfer. This is the consequence, why the sand mould has a lower value thermal accumulation than a metal mould. The metal mould as a result of its character and compactness has a high heat accumulation value. Therefore, in the metal mould cast solidifies faster than the in sand mould. Based on the Newton's and Fourier's laws, there were indicative calculated times of solidification cast of shape plate in the sand and metal moulds. Concurently were made simulations calculations performed solidification of shaped plate through simulation software MAGMA 5. To obtain the corresponding results of simulation calculations, it is important to use the respective temperature-dependent of the thermo-physical variables, including temperature dependence heat transfer coefficient.

Keywords: Sand mould, Metal mould, Solidification, Heat transfer, Thermo-physical quantities

Published: April 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Machuta J, Nova I. Analysis of Heat Transfer Conditions in the Sand and Metal Moulds and Their Effect on the Solidification of the Casting. Manufacturing Technology. 2016;16(2):380-384. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/380.
Download citation

References

  1. LYKOV, A. V. (1967). Teorija teploprovodnosti. (Theory of heat conduction). 1. vyd. Moskva (in Russian).
  2. CHVORINOV,N. (1940). Giesserei,10, p. 177-186, May.
  3. JELINEK, P. (2004). Pojivové soustavy slévárenských formovacích směsí, Chemie slévárenských pojiv. (Binding systems of molding sands, Chemistry foundry binders). 1. vyd., Ostrava, ISBN 80 - 239 - 2188 - 6 (in Czech).
  4. JELINEK, P. (2000). Ostřiva - Disperzní soustavy slévárenských formovacích směsí. (Sands, Dispersion systéms of moulding mixtures). 1. vyd., Ostrava, ISBN 80 - 238 - 6118 - 2 (in Czech).
  5. VEJNIK, A. I.: (1968). Rasčot otlivki. (Cast analysis) 1. vyd., Moskva (in Russian).
  6. VALCHÁŘOVÁ, J. (1986). Soudobé numerické metody v mechanice kontinua. (Current numerice methods in kontinuum mechanics). 1. vyd., Praha (in Czech).
  7. KLECKOVA, Z., HASEK, P. (1990). Stanovení součinitele teplotní vodivosti formovacích směsí daného chemického složení v závislosti na teplotě. (Determination of thethermal diffusivity of the moulding mixture of the chemical composition depending on thetemperature). Slévárenství XXXVIII, č. 10, s. 414 až 417 (in Czech).
  8. JURA, S. et al. (1996). Transfer Developmet and Application of Simulation Techniquesfor Permanent Mould in Al - Casting. [Program Copernicus], TU Gliwice (in Polish).
  9. CAMPBELL, J. (2004). Casting practise, The 10 rules of casting. First publication. Elsevier Science Ltd. ISBN 07506 4791 4.
  10. CAMPBELL, J. (2003). Castings, The new metalurgy of casting metals. Second publication. Elsevier Science Ltd. ISBN 0 7506 4790 6.
  11. SULAIMAN, S.. HAMOUDA, A. (2004). Modelling and experimental investigation of solidification process in sand casting. In: Journal of Materials Processing Technology 155-156 (2004) 1723-1726. Go to original source...
  12. MACHUTA, J., NOVÁ, I. (2015). Simulation calculations of solidification and cooling of copper alloys casts. In: Manufacturing Technology Vol. 15 No 4. pp. 591-596. Go to original source...
  13. NOVÁ, I., MACHUTA, J. HORÁČEK, J. (2015). Increasing the quality of the production steering wheel castings using simulation calculations of solidification. In: Manufacturing Technology, Vol.15 No 4. pp. 638-644. Go to original source...