Manufacturing Technology 2025, 25(5):576-581 | DOI: 10.21062/mft.2025.072

In Situ TEM and Molecular Dynamics Investigation of Grain Growth in Nanocrystalline Cu Nanoparticles

Lucia Bajtošová ORCID...1, Mia Myšičková ORCID...1, Nikoleta Štaffenová ORCID...1, Elena Chochoľaková ORCID...1, Jan Hanuš ORCID...1, Jan Fikar ORCID...2, Miroslav Cieslar ORCID...1
1 Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague, Czech Republic
2 Czech Academy of Sciences, Institute of Physics of Materials, Žižkova 22, 61600 Brno, Czech Republic

The thermal stability of nanocrystalline Cu nanoparticles was investigated using a combination of in situ TEM annealing experiments and molecular dynamics (MD) simulations. Nanoparticles prepared by a gas aggregation source exhibit an average size of ~100 nm and are predominantly polycrystalline, with grains of ~25 nm. Upon annealing up to 600 °C, the particles preserve their external morphology without signs of sintering, while their internal structure evolves through progressive grain growth. Orientation mapping revealed an increase in Σ3 and other special boundaries, consistent with the tendency of grain boundary networks to evolve toward low-energy configurations. MD simulations partially reproduce the general coarsening process and the formation of nearly monocrystalline particles, but predominantly produce {111} stacking faults rather than Σ3 twins. This discrepancy is attributed to the limited timescale and idealized initial conditions of the simulations compared with the defect-rich experimental particles.

Keywords: Cu nanoparticles, Grain growth, Nanocrystalline grains, ACOM TEM, Molecular dynamics
Grants and funding:

The authors would like to thank the support from the Grant Agency of Charles University under the project 280223

Received: August 29, 2025; Revised: November 24, 2025; Accepted: November 25, 2025; Prepublished online: December 1, 2025; Published: December 8, 2025  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bajtošová L, Myšičková M, Štaffenová N, Chochoľaková E, Hanuš J, Fikar J, Cieslar M. In Situ TEM and Molecular Dynamics Investigation of Grain Growth in Nanocrystalline Cu Nanoparticles. Manufacturing Technology. 2025;25(5):576-581. doi: 10.21062/mft.2025.072.
Download citation

References

  1. GLEITER, H. (1989). Nanocrystalline materials. In: Progress in Materials Science, Vol. 33, No. 4, pp. 223-315. Elsevier. Netherlands. ISSN 0079-6425 Go to original source...
  2. WEISSMÜLLER, J. (1993). Alloy effects in nanostructures. In: Nanostructured Materials, Vol. 3, No. 1-6, pp. 261-272. Elsevier. Netherlands. ISSN 0965-9773 Go to original source...
  3. CHOOKAJORN, T.; MURDOCH, H. A.; SCHUH, C. A. (2012). Design of stable nanocrystalline alloys. In: Science, Vol. 337, No. 6097, pp. 951-954. AAAS. United States. ISSN 0036-8075 Go to original source...
  4. ŠLAPÁKOVÁ POKOVÁ, M.; CIESLAR, M.; ZIMINA, M. (2015). Grain Refinement in Al-Mn-Fe-Si Al-loys by Severe Plastic Deformation. In: Manufacturing Technology, Vol. 15, No. 4, pp. 679-684. Jan Evan-ge-lista Purkyně University. Czech Republic. ISSN 1213-2489 Go to original source...
  5. SCHUH, C. A.; LU, K. (2021). Stability of nanocrystalline metals: The role of grain boundary chemistry and structure. In: MRS Bulletin, Vol. 46, No. 3, pp. 225-235. Springer Nature. USA. ISSN 0883-7694 Go to original source...
  6. BARMAK, K.; KE, X.; MA, E. (2024). Advances in experimental studies of grain growth in thin films. In: JOM, Vol. 76, No. 12, pp. 3622-3636. The Minerals, Metals & Materials Society (TMS). USA. ISSN 1047-4838 Go to original source...
  7. MOHAN, K. (2018). A review of nanoporous metals in interconnects. In: JOM, Vol. 70, No. 12, pp. 2780-2788. The Minerals, Metals & Materials Society (TMS). USA. ISSN 1047-4838 Go to original source...
  8. MERCHANT, S.; KANG, S. H.; SANGANERIA, M.; VAN SCHRAVENDIJK, B. (2001). Copper interconnects for semiconductor devices. In: JOM, Vol. 53, No. 6, pp. 43-48. The Minerals, Metals & Materials Society (TMS). USA. ISSN 1047-4838 Go to original source...
  9. GAWANDE, M. B.; GOSWAMI, A.; FELPIN, F.-X.; WILSON, K.; LUI, R.; ZHANG, X.; ZHANG, T.; ZBORIL, R.; VARMA, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. In: Chemical Reviews, Vol. 116, No. 6, pp. 3722-3811. American Chemical Society. USA. ISSN 0009-2665 Go to original source...
  10. NITOPI, S.; CHAN, K.; ENGSTROM, K.; HUANG, M.; NOEL, J.; NYBERG, L.; ORELLANA, R.; et al. (2019). Progress and perspectives of electrochemical CO₂ reduction on copper in aqueous electrolyte. In: Chemical Reviews, Vol. 119, No. 12, pp. 7610-7672. American Chemical Society. USA. ISSN 0009-2665 Go to original source...
  11. OČENÁŠEK, V.; LUŠTINEC, J. (2022). Stress Corrosion Cracking and Copper Alloy Products. In: Manufacturing Technology, Vol. 22, No. 1, pp. 39-44. Jan Evangelista Purkyně University. Czech Republic. ISSN 1213-2489 Go to original source...
  12. SIMÕES, S.; CALINAS, R.; VIEIRA, M. T.; VIEIRA, M. F.; FERREIRA, P. J. (2010). In situ TEM study of grain growth in nanocrystalline copper thin films. In: Nanotechnology, Vol. 21, No. 14, 145701. IOP Publishing. United Kingdom. ISSN 0957-4484 Go to original source...
  13. ZUO, Y.; ZHAO, C.; ROBADOR, A.; WICKHAM, M.; MANNAN, S. H. (2022). Quasi-in-situ observation of the grain growth and grain boundary movement in sintered Cu nanoparticle interconnects. In: Ac-ta Materialia, Vol. 236, 118135. Elsevier. Netherlands. ISSN 1359-6454 Go to original source...
  14. AL-SARAIREH, F. M. (2025). The Effect of Annealing Conditions on Copper's Brittleness and Powder Production Efficiency. In: Manufacturing Technology, Vol. 25, No. 3, pp. 366-372. Jan Evangelista Purkyně University. Czech Republic. ISSN 1213-2489 Go to original source...
  15. BUFFAT, Ph.; BOREL, J.-P. (1976). Size effect on the melting temperature of gold particles. In: Physical Review A, Vol. 13, No. 6, pp. 2287-2298. American Physical Society. United States. ISSN 2469-9926 Go to original source...
  16. YEADON, M.; YANG, J. C.; AVERBACK, R. S.; BULLARD, J. W. (1997). In-situ TEM study of the sintering of copper nanoparticles on (001) copper. Electron Microscopy and Analysis 1997, pp. 257-260. IOP Publishing, United Kingdom. ISBN 978-0-7503-0441-2. Go to original source...
  17. YU, E.-K.; PIAO, L.; KIM, S.-H. (2011). Sintering behavior of copper nanoparticles. In: Bulletin of the Ko-rean Chemical Society, Vol. 32, No. 11, pp. 4099-4104. Wiley-VCH for the Korean Chemical Society. South Korea. ISSN 0253-2964 Go to original source...
  18. MOLDOVAN, D.; WOLF, D.; PHILLPOT, S. R.; HASLAM, A. J. (2003). Grain rotation as a mechanism of grain growth in nanocrystalline materials. Computer Simulation of Materials at Atomic Level, pp. 11-24. Wiley-VCH. Germany. ISBN 978-3-527-60310-7 Go to original source...
  19. DREMOV, V. V.; CHIRKOV, P. V.; KARAVAEV, A. V. (2021). Molecular dynamics study of the effect of extended in-grain defects on grain growth kinetics in nanocrystalline copper. In: Scientific Reports, Vol. 11, 934. Nature Portfolio. United Kingdom. ISSN 2045-2322 Go to original source...
  20. RANDLE, V. (2004). Twinning-related grain boundary engineering. In: Acta Materialia, Vol. 52, No. 14, pp. 4067-4081. Elsevier. Netherlands. ISSN 1359-6454 Go to original source...
  21. HE, S.; WANG, C.; QI, L.; YE, H.; DU, K. (2020). In situ observation of twin-assisted grain growth in nanometer-scaled metal. In: Micron, Vol. 131, 102825. Elsevier. United Kingdom. ISSN 0968-4328 Go to original source...
  22. LUO, X.; ZHANG, Y.; CAI, W.; LU, L.; TU, K. N.; ZHU, T. (2014). Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. In: Nature Communications, Vol. 5, 3021. Nature Portfolio. United Kingdom. ISSN 2041-1723 Go to original source...
  23. PANZARINO, J. F.; JIAO, S.; HEMKER, K. J.; HEMKER, T. L.; BROWN, J. A. (2016). Plasticity-induced restructuring of a nanocrystalline grain-boundary network. In: Acta Materialia, Vol. 120, pp. 1-13. Elsevier. Netherlands. ISSN 1359-6454 Go to original source...
  24. FARKAS, D.; MOHANTY, S.; MONK, J. (2007). Linear grain growth kinetics and rotation in nanocrystalline Ni. In: Physical Review Letters, Vol. 98, No. 16, 165502. American Physical Society. United States. ISSN 0031-9007 Go to original source...
  25. DRÁBIK, M.; CHOUKOUROV, A.; ARTEMENKO, A.; KOUSAL, J.; POLONSKYI, O.; SOLAŘ, P.; KYLIÁN, O.; MATOUŠEK, J.; PEŠIČKA, J.; MATOLÍNOVÁ, I.; et al. (2011). Plasma polymerization in gas aggregation cluster sources. In: Plasma Processes and Polymers, Vol. 8, pp. 640-649. Wiley-VCH Verlag. Germany. ISSN 1612-8850. Go to original source...
  26. PLIMPTON, S. (1995). Fast parallel algorithms for short-range molecular dynamics. In: Journal of Computational Physics, Vol. 117, pp. 1-19. Elsevier. United States. ISSN 0021-9991 Go to original source...
  27. MISHIN, Y.; MEHL, M. J.; PAPACONSTANTOPOULOS, D. A.; VOTER, A. F.; KRESS, J. D. (2001). Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. In: Physical Review B, Vol. 63, No. 22, 224106. American Physical Society. United States. ISSN 2469-9950 Go to original source...
  28. HIREL, P. (2015). Atomsk: A tool for manipulating and converting atomic data files. In: Computer Physics Communications, Vol. 197, pp. 212-219. Elsevier. Netherlands. ISSN 0010-4655 Go to original source...
  29. KANG, J. M. (2008). Voronoi diagram. Encyclopedia of GIS, pp. 1232-1235. Springer. Germany/USA. ISBN 978-0-387-35973-1. Go to original source...
  30. LARSEN, P. M.; SCHMIDT, S.; SCHIØTZ, J. (2016). Robust structural identification via polyhedral template matching. In: Modelling and Simulation in Materials Science and Engineering, Vol. 24, Article 055007. IOP Publishing. United Kingdom. ISSN 0965-0393 Go to original source...
  31. STUKOWSKI, A. (2009). Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. In: Modelling and Simulation in Materials Science and Engineering, Vol. 18, Article 015012. IOP Publishing. United Kingdom. ISSN 0965-0393 Go to original source...
  32. FARKAS, D.; BRINGA, E.; CARO, A. (2007). Annealing twins in nanocrystalline fcc metals: A molecular dynamics study. In: Physical Review B, Vol. 75, 184111. American Physical Society. United States. ISSN 2469-9950 Go to original source...
  33. RANDLE, V. (2005). Grain boundary engineering, pp. 1-8. In: BUSCHOW, K. H. J.; CAHN, R. W.; FLEMINGS, M. C.; ILSCHNER, B.; KRAMER, E. J.; MAHAJAN, S.; VEYSSIÈRE, P. (eds.), Encyclopedia of Materials: Science and Technology. Elsevier, Oxford. ISBN 978-0-08-043152-9. Go to original source...
  34. WATANABE, T. (1984). An approach to grain boundary design for strong and ductile polycrystals. Res Mechanica, Vol. 11, No. 1, pp. 47-84. Elsevier. United Kingdom. ISSN 0143-0084.
  35. PANDE, C. S.; RATH, B. B.; OVID'KO, I. A. (2006). Grain boundaries in nanomaterials. Nano-materials Handbook (Y. Gogotsi, Ed.), Chapter 18, pp. 375-396. CRC Press, USA. ISBN 978-0-8493-7117-6.
  36. NAZAROV, A. A.; BACHURIN, D. V.; SHENDEROVA, O. A.; BRENNER, D. W. (2003). On the origin and energy of the triple junction defect due to the finite length of grain boundaries. In: Interface Sci-ence, Vol. 11, pp. 417-425. Springer. Netherlands. ISSN 0927-7056 Go to original source...
  37. BOBER, D. B.; KUMAR, M.; RUPERT, T. J. (2015). Nanocrystalline grain boundary engineering: Increasing Σ3 boundary fraction in pure Ni with thermomechanical treatments. In: Acta Materialia, Vol. 86, pp. 43-54. Elsevier. Netherlands. ISSN 1359-6454 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.