Manufacturing Technology 2025, 25(5):662-669 | DOI: 10.21062/mft.2025.070
Mechanical Alloying, an Innovative Way of Zinc Preparation for Biomaterial Preparation
- Faculty of Chemistry and Technology, University of Chemistry and Technology in Prague. Technická 5, 160 00 Prague. Czech Republic
In this study, binary zinc-based alloys (Zn–1Mg, Zn–1Li, Zn–2Mn, wt.%) were synthesized by performing mechanical alloying (MA) of elemental powders, followed by consolidation using spark plasma sintering (SPS). The processing parameters were optimized to obtain homogeneous powders with controlled particle size. X-ray diffraction and SEM analyses confirmed the presence of secondary intermetallic phases (Mg2Zn11, Zn13Mn, ZnLi2 phases) formed during milling, which were preserved after SPS. Microstructural examination revealed a fine-grained microstructure with residual oxide networks originating from powder surfaces. Mechanical testing demonstrated significant strengthening effects after Mg and Li additions, with Zn–1Mg alloy reaching the highest hardness (128 HV1) and compressive strength (526.7 MPa), attributed to uniformly distributed Mg2Zn11 precipitates. However, this strengthening was accompanied by reduced ductility. Zn–1Li exhibited the most balanced combination of strength and plasticity, while Zn–2Mn provided only a limited improvement over pure zinc. These results confirm that mechanical alloying combined with SPS is a promising route for developing biodegradable Zn-based biomaterials with enhanced properties.
Keywords: Biodegradable Metals, Zinc Alloys, Powder Metallurgy, Microstructure, Compressive Test
Grants and funding:
This research was supported by the Czech Science Foundation (project no. 25-16144S), Specific University research (project no. A1_FCHT_2025_011), and by the project "Mechanical Engineering of Biological and Bio-inspired Systems", funded as project No. CZ.02.01.01/00/22_008/0004634 by Programme Johannes Amos Commenius
Received: August 8, 2025; Revised: November 19, 2025; Accepted: November 19, 2025; Prepublished online: December 4, 2025; Published: December 8, 2025 Show citation
References
- KUBÁSEK, J., DVORSKÝ, D., ČAPEK, J., MARKÉTA, S., KLÁRA, H., & VOJTĚCH, D. (2020). Zinc alloys as prospective materials for biodegradable medical devices. In: Manufacturing Technology, Vol. 20, No. 6, pp. 779-784. DOI: 10.21062/mft.2020.113.
Go to original source... - KUBASEK, J., & VOJTĚCH, D. (2012). Zn-based alloys as an alternative biodegradable materials. In: Proc. Metal, Vol. 5, No. 23-25.
- VOJTECH, D., KUBASEK, J., SERAK, J., & NOVAK, P. (2011). Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. In: Acta Biomater, Vol. 7, No. 9, pp. 3515-22. DOI: 10.1016/j.actbio.2011.05.008.
Go to original source... - FARMANI, A.R., SALMEH, M.A., GOLKAR, Z., MOEINZADEH, A., GHIASI, F.F., AMIRABAD, S.Z., SHOORMEIJ, M.H., MAHDAVINEZHAD, F., MOMENI, S., MORADBEYGI, F., AI, J., HARDY, J.G., & MOSTAFAEI, A. (2022). Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. In: Journal of Functional Biomaterials, Vol. 13, No. 4, pp. 162.
Go to original source... - ARAL, H., & VECCHIO-SADUS, A. (2008). Toxicity of lithium to humans and the environment--a literature review. In: Ecotoxicol Environ Saf, Vol. 70, No. 3, pp. 349-56. DOI: 10.1016/j.ecoenv.2008.02.026.
Go to original source... - HAUSSLER, J., & BADER, M. (2015). An interference account of the missing-VP effect. In: Front Psychol, Vol. 6, No. 766. DOI: 10.3389/fpsyg.2015.00766.
Go to original source... - SHI, Z.-Z., YU, J., & LIU, X.-F. (2018). Microalloyed Zn-Mn alloys: From extremely brittle to extraordinarily ductile at room temperature. In: Materials & Design, Vol. 144, No. 343-352. DOI: https://doi.org/10.1016/j.matdes.2018.02.049.
Go to original source... - MOSTAED, E., SIKORA-JASINSKA, M., DRELICH, J.W., & VEDANI, M. (2018). Zinc-based alloys for degradable vascular stent applications. In: Acta Biomaterialia, Vol. 71, No. 1-23. DOI: https://doi.org/10.1016/j.actbio.2018.03.005.
Go to original source... - KAMMERER, C.C., BEHDAD, S., ZHOU, L., BETANCOR, F., GONZALEZ, M., BOESL, B., & SOHN, Y.H. (2015). Diffusion kinetics, mechanical properties, and crystallographic characterization of intermetallic compounds in the Mg-Zn binary system. In: Intermetallics, Vol. 67, No. 145-155. DOI: https://doi.org/10.1016/j.intermet.2015.08.001.
Go to original source... - REN, T., GAO, X., XU, C., YANG, L., GUO, P., LIU, H., CHEN, Y., SUN, W., & SONG, Z. (2019). Evaluation of as-extruded ternary Zn-Mg-Zr alloys for biomedical implantation material: In vitro and in vivo behavior. In: Materials and Corrosion, Vol. 70, No. 6, pp. 1056-1070. DOI: https://doi.org/10.1002/maco.201810648.
Go to original source... - SHI, Z.Z., GAO, X.X., ZHANG, H.J., LIU, X.F., LI, H.Y., ZHOU, C., YIN, Y.X., & WANG, L.N. (2020). Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. In: Bioact Mater, Vol. 5, No. 2, pp. 210-218. DOI: 10.1016/j.bioactmat.2020.02.010.
Go to original source... - KRATOCHVÍL, P., & PRŮŠA, F. (2022). CoCrFeNiTi High Entropy Alloy Prepared via Mechanical Alloying and Spark Plasma Sintering. In: Manufacturing Technology Journal, Vol. 22, No. 4, pp. 423-428. DOI: 10.21062/mft.2022.049.
Go to original source... - THÜRLOVÁ, H., & PRŮŠA, F. (2022). Partial Substitution of Mn by Al in the Cocrfenimnxal20-X (X=5, 10, 15) High Entropy Alloy Prepared of Mechanical Alloying and Spark Plasma Sintering. In: Manufacturing Technology Journal, Vol. 22, No. 3, pp. 342-346. DOI: 10.21062/mft.2022.045.
Go to original source... - SURYANARAYANA, C. (2001). Mechanical alloying and milling. In: Progress in Materials Science, Vol. 46, No. 1, pp. 1-184. DOI: https://doi.org/10.1016/S0079-6425(99)00010-9.
Go to original source... - SURYANARAYANA, C. (2019). Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials. In: Research (Wash D C), Vol. 2019, No. 4219812. DOI: 10.34133/2019/4219812.
Go to original source... - NEČAS, D., HYBÁŠEK, V., PINC, J., ŠKOLÁKOVÁ, A., VOŇAVKOVÁ, I., HOSOVÁ, K., ZLÁMAL, M., BOUKALOVÁ, A., POKORNÝ, J., DVORSKÝ, D., MINÁRIK, P., VESELÝ, J., DONIK, Č., VOJTĚCH, D., & KUBÁSEK, J. (2024). Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniques. In: Journal of Materials Research and Technology, Vol. 29, No. 3626-3641. DOI: https://doi.org/10.1016/j.jmrt.2024.02.066.
Go to original source... - NECAS, D., MAREK, I., PINC, J., VOJTECH, D., & KUBASEK, J. (2022). Advanced Zinc-Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. In: Materials (Basel), Vol. 15, No. 15, pp. DOI: 10.3390/ma15155272.
Go to original source... - ZHAO, S., SEITZ, J.-M., EIFLER, R., MAIER, H.J., GUILLORY, R.J., EARLEY, E.J., DRELICH, A., GOLDMAN, J., & DRELICH, J.W. (2017). Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat. In: Materials Science and Engineering: C, Vol. 76, No. 301-312. DOI: https://doi.org/10.1016/j.msec.2017.02.167.
Go to original source... - NEČAS, D., KUBÁSEK, J., PINC, J., MAREK, I., DONIK, Č., PAULIN, I., & VOJTĚCH, D., (2022). Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering. Materials, 15, DOI: 10.3390/ma15238379.
Go to original source... - DVORSKY, D., KUBASEK, J., & VOJTECH, D. (2017). Corrosion protection of WE43 magnesium alloy by fluoride conversion coating. In: Manufacturing Technology, Vol. 17, No. 4, pp. 440-446.
Go to original source... - DVORSKÝ, D., KUBÁSEK, J., KRISTIANOVÁ, E., & VOJTĚCH, D. (2018). Corrosion resistant magnesium-based composite material with MgF2 continuous network prepared by powder metallurgy. In: Manufacturing Technology, Vol. 18, No. 5, pp. 737-741. DOI: 10.21062/ujep/180.2018/a/1213-2489/MT/18/5/737.
Go to original source... - DVORSKY, D., KUBASEK, J., & VOJTECH, D. (2018). A new approach in the preparation of biodegradable Mg-MgF2 composites with tailored corrosion and mechanical properties by powder metallurgy. In: Materials Letters, Vol. 227, No. 78-81. DOI: https://doi.org/10.1016/j.matlet.2018.05.052.
Go to original source... - SOTOUDEH BAGHA, P., KHALEGHPANAH, S., SHEIBANI, S., KHAKBIZ, M., & ZAKERI, A. (2018). Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying. In: Journal of Alloys and Compounds, Vol. 735, No. 1319-1327. DOI: 10.1016/j.jallcom.2017.11.155.
Go to original source... - PINC, J., MIKLÁŠOVÁ, E., PRŮŠA, F., ČAPEK, J., DRAHOKOUPIL, J., & VOJTĚCH, D.J.M.T. (2019). Influence of processing on the microstructure and the mechanical properties of Zn/HA8 wt.% biodegradable composite. In: 19, No. 836-841.
Go to original source... - HERNÁNDEZ-ESCOBAR, D., CHAMPAGNE, S., YILMAZER, H., DIKICI, B., BOEHLERT, C.J., & HERMAWAN, H. (2019). Current status and perspectives of zinc-based absorbable alloys for biomedical applications. In: Acta Biomaterialia, Vol. 97, No. 1-22. DOI: https://doi.org/10.1016/j.actbio.2019.07.034.
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.



ORCID...