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This study proposes a multi-stage intelligent diagnostic approach integrating Physics-Guided Normali-
zation (LPGN), enhanced Transformer networks, and Gaussian Mixture Models (GMM) for thermal fault 
detection in turbine generator stators. The methodology sequentially performs the following steps: (1) 
enhances localized anomaly features in temperature data through LPGN, (2) efficiently extracts temporal 
patterns via the optimized Transformer architecture, and (3) achieves unsupervised fault classification 
using GMM. Experimental results demonstrate the proposed method's superiority over conventional 
ARIMA and LSTM models across multiple evaluation metrics, exhibiting a lower RMSE and a higher 
detection accuracy. Ablation studies further validate the individual contributions of each component to 
performance improvement. This solution provides an efficient and reliable framework for intelligent ther-
mal monitoring in large rotating electrical machinery. 
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 Introduction 

In a steam turbine generator, the rotor plays a cri-
tical role. Connected to the steam turbine, it rotates at 
high speed under the turbine's drive, generating a 
powerful rotating magnetic field in its windings [1]. 
This magnetic field interacts with the stator windings 
and, based on the principle of electromagnetic in-
duction, induces alternating current in the stator. 
Thus, the rotor is one of the core components respon-
sible for energy conversion in the generator, and its 
performance directly impacts the generator's effi-
ciency and stability [2-4]. 

Thermal fault detection in turbine generator sta-
tors is of great significance for ensuring the long-term 
safe and stable operation of power units. As the pri-
mary power-generating component of a generator, the 
stator's windings and core endure substantial thermal 
loads during operation [5]. Undetected issues such as 
cooling system failures, insulation aging, or localized 
overloads can easily lead to overheating faults, poten-
tially resulting in severe consequences such as insula-
tion breakdown or equipment burnout. 

However, stator thermal fault detection presents 
several challenges: the concealed nature of fault loca-
tions, uneven heat distribution, and complex opera-
ting environments make it difficult for conventional 
detection methods to achieve precise localization and 
real-time early warning. Therefore, developing highly 
sensitive and high-resolution temperature monitoring 
technologies, along with intelligent diagnostic met-
hods, is key to improving the accuracy and efficiency 
of stator thermal fault detection [6-7]. 

In summary, existing thermal fault detection met-

hods for turbine generator stators still exhibit limitati-
ons in handling complex temporal relationships, iden-

tifying localized temperature rise anomalies, and mo-

deling feature distributions, making it challenging to 
meet the requirements for high-precision and robust 

fault early-warning under actual operating conditions. 

To address these challenges, this study proposes a 
multi-stage intelligent detection approach that integra-

tes physics-guided normalization, an enhanced Trans-

former network architecture, and Gaussian Mixture 

Models. This integrated methodology aims to compre-

hensively improve the model's capabilities in percei-

ving, modeling, and identifying stator thermal faults, 

thereby achieving more accurate and stable thermal 

anomaly prediction and diagnosis. 

 Related Work 

Currently, thermal fault detection in turbine gene-

rator stators has become an important research di-

rection in power equipment condition monitoring and 
intelligent operation and maintenance [8-9]. Research 

efforts primarily focus on temperature sensing tech-

nologies, thermal field modeling and simulation, fault 
feature extraction, and intelligent diagnostic methods. 

Conventional techniques such as thermistors, thermo-

couples, and infrared imaging have been widely 

adopted for field monitoring, yet they still exhibit cer-

tain limitations in real-time performance, resolution, 

and anti-interference capability [10-12]. 
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In recent years, emerging technologies like Fiber 
Bragg Grating (FBG) sensing and distributed tempe-
rature sensing (DTS) have gained traction, offering 
higher sensitivity and spatially distributed monitoring 
capabilities [13]. Meanwhile, the integration of artifi-
cial intelligence and big data analytics has enabled in-
telligent fault identification and trend prediction, ma-
king it a key research focus. 

Eyha et al. [14] propose a non-invasive diagnostic 
method for detecting inter-turn short circuit (ITSC) 
and dynamic eccentricity (DE) faults in excitation win-
dings. This method, based on advanced analysis tech-
niques of stray magnetic field signals, can be imple-
mented during generator operation, enabling accurate 
monitoring of the rotor excitation winding condition. 
It also generates characteristic diagnostic maps that 
facilitate the identification of potential ITSC faults. 
Michalski et al. [15] develop a hybrid fault detection 
and diagnosis approach that incorporates unsupervi-
sed machine learning techniques, aiming to identify 
faults before generator shutdown. By analyzing histo-
rical operational data from hydropower stations, the 
method reveals patterns in fault development, thereby 
aiding in understanding the evolution of fault mecha-
nisms and their potential consequences. El Idrissi et 
al. [16] propose a non-destructive testing (NDT) met-
hod for diagnosing stator imbalance defects in in-
duction motors (IM), based on thermal imaging and 
machine learning. This technique evaluates the ther-
mal distribution state within regions of interest (ROI) 
by analyzing the temperature distribution on the sta-
tor’s outer surface, combined with multiple statistical 
indicators, thus providing criteria to determine 
whether the thermal distribution is abnormal. Stone et 
al. [17] propose a health monitoring and fault identifi-
cation method for thermal degradation effects in the 
insulation systems of form-wound stator coils. 
Through periodic off-line inspections of these coils, 
the researchers analyzed thermal aging data of the in-
sulation materials up to the point of failure. Attallah et 
al. [18] develop an online non-invasive diagnostic  

approach for three-phase induction machines (IMs) 
based on infrared thermography. This methodology 
integrates three convolutional neural network (CNN)-
based deep learning architectures (Inception, Xcep-
tion, and MobileNet) to simultaneously identify the (1) 
IM operational status, (2) fault types, and (3) the loca-
tion and severity of inter-turn faults (ITFs). 

Despite significant progress, existing methods still 
face challenges in achieving high-precision detection 
and early warning under complex operating conditi-
ons. To address these limitations, this paper proposes 
a stator thermal fault detection model for steam tur-
bine generators, which integrates an improved Trans-
former architecture with a Gaussian mixture model to 
enhance feature representation and anomaly discrimi-
nation. 

 Materials and Methods 

 Locally Physics-Guided Normalization 

A Locally Physics-Guided Normalization (LPGN) 
method integrating physical priors with local trend 
enhancement is proposed for preprocessing thermal 
fault detection data in turbine generator stators, 
effectively improving subsequent Transformer model 
learning. While conventional normalization methods 
(e.g., Min-Max or Z-score) can standardize data distri-
butions, they fail to account for physical characteris-
tics of temperature fields, such as: (1) varying thermal 
inertia across stator regions, (2) thermal diffusion 
coupling effects, and (3) potential masking of anoma-
lies by global averaging. The proposed LPGN method 
synergistically combines local trend enhancement with 
thermal-physical structural guidance, enabling heigh-
tened model sensitivity to subtle yet critical tempera-
ture rise anomalies. 

Given the original temperature sequence T = {T₁, 

T₂,..., Tₙ} with corresponding spatial positions X = 

{x₁, x₂,..., xₙ}, the normalization method is defined as 
follows: 

𝑇𝑖
(𝑛𝑜𝑟𝑚)

=
𝑇𝑖 − 𝜇𝑖

(𝑙𝑜𝑐𝑎𝑙)

𝜎𝑖
(𝑙𝑜𝑐𝑎𝑙)

+ 𝛼 ⋅ 𝐷𝑖 + 𝛽
 (1) 

𝜇𝑖
(𝑙𝑜𝑐𝑎𝑙)
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|𝑁(𝑖)|
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𝜎𝑖
(𝑙𝑜𝑐𝑎𝑙)

= √
1

|𝑁(𝑖)|
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(𝑙𝑜𝑐𝑎𝑙)

)2 (3) 

Where:  

Tᵢ…The local sliding window mean centered at 
point i; 

σ…The corresponding local standard deviation; 

Dᵢ…The estimated thermal diffusion coefficient at 
that location (reflecting thermal stability); 

α, β…Tunable hyperparameters (α=0.1, β=1e-5); 
N(i)…The neighborhood set of point i (spatially 

topologically connected).  
Compared to global means, local means exhibit 

greater sensitivity to abrupt anomalies, the incorpora-

tion of thermal diffusion coefficient Dᵢ directs  
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network attention to thermally unstable, failure-prone 
regions, the β parameter controls amplification effects 
under minimal standard deviation to maintain nume-
rical stability. This approach is well-suited for spatio-
temporal temperature field inputs and enhances dyna-
mic feature extraction in Transformer-based models. 

 Improved Transformer model 

In recent years, large models with Transformer 
networks as their core architecture have garnered sig-
nificant attention due to their outstanding creativity 
and logical reasoning capabilities. The Transformer 
network introduces a self-attention mechanism that 
enables more effective and efficient learning of inter-
relationships within input sequences [19]. Additiona-
lly, the parallel processing of positional information in 
Transformer networks substantially improves training 
speed and efficiency. To enhance the prediction ac-
curacy of braking torque in the Transformer encoder, 
we have improved the encoder component by desig-
ning a parallel module based on a gated mechanism 
that combines self-attention and convolutional neural 
networks. This module separately extracts global fea-
tures through the self-attention mechanism and local 
features via convolutional neural networks. Figure 1 
illustrates the improved Transformer structure with a 
feature fusion gate. 

 

Fig. 1 Improve the Transformer structure diagram 
 
Simply incorporating global and local features pro-

ves insufficient to enhance the Transformer's pre-
diction accuracy. To address this limitation, we intro-
duce a gating mechanism and propose an adaptive fe-
ature fusion approach tailored for multi-dimensional 

characteristics, whose architecture is depicted in Fi-
gure 2. 

 

Fig. 2 Feature fusion gating structure diagram 
 
The fusion process consists of three key stages: 

First, during the weight computation phase, gate con-
trol weights are generated by applying Sigmoid activa-

tion to input feature h₁, which quantitatively evaluate 

the importance of another feature h₂. Subsequently, in 
the adaptive fusion phase, these weights undergo ele-

ment-wise multiplication with h₂ before being added 

to h₁, achieving dynamic feature integration. Finally, 
the fused features are transformed through a linear 
mapping layer to produce the final output [20]. This 
architecture effectively regulates the relative influence 
of different features during fusion, thereby enhancing 
the model's capability to extract critical information. 

 Gaussian Mixture Model 

By modeling the temporal features extracted by the 
Transformer, the Gaussian Mixture Model (GMM) 
can represent them as a mixed probability model com-
posed of multiple Gaussian distributions, thereby 
effectively distinguishing between normal operating 
states and potential thermal fault characteristics. This 
approach requires minimal prior labeling, making it 
suitable for unsupervised or semi-supervised 
scenarios, and can autonomously learn the distri-
bution structure within the feature space, demonstra-
ting high sensitivity to subtle and concealed thermal 
anomalies. By combining the powerful feature ex-
traction capabilities of the Transformer with the pro-
babilistic modeling advantages of GMM, the method 
achieves high-precision identification and early war-
ning of stator thermal faults. The process of the Gaus-
sian mixture model is as follows: 

𝑃(𝑋𝑡) = ∑  

𝐾

𝑘=1

𝜔𝑘,𝑡𝜂(𝑋𝑡 , 𝜇𝑘,𝑡 , 𝐶𝑘,𝑡) (4) 

Where:  
K…The number of Gaussian distributions, which 

corresponds to the quantity of sub-models in the mi-
xture model; 

P(Xₜ)…The probability of observing value Xₜ at 
time t;  

ωₖ,ₜ…The distribution weight at time t, signifying 
the likelihood of a sample belonging to that particular 

sub-model; 

η(Xₜ, μₖ,ₜ, Cₖ,ₜ)…The probability density function; 

μₖ,ₜ…The expectation of the Gaussian distri-
bution;  

Cₖ,ₜ…The covariance at time t.  
The number of Gaussian distributions used as the 

background model is defined as follows: 
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𝐵 = arg𝑏 𝑚𝑖𝑛 (∑  

𝑏

𝑘=1

𝜔𝑘,𝑡 > 𝑇th) (5) 

Where:  
Tth…The set distribution weight threshold.  

The way the new observations update the Gaussian 
distribution is as follows: 

𝜔𝑘,𝑡+1 = (1 − 𝛼) ⋅ 𝜔𝑘,𝑡 + 𝛼 ⋅ 𝑀𝑘,𝑡+1 (6) 

𝜇𝑘,𝑡+1 = (1 − 𝜌) ⋅ 𝜇𝑘,𝑡 + 𝜌 ⋅ 𝑋𝑡+1 (7) 

𝜎𝑘,𝑡+1
2 = (1 − 𝜌)𝜎𝑘,𝑡

2 + 𝜌(𝑋𝑡+1 − 𝜇𝑘,𝑡+1) × (𝑋𝑡+1 − 𝜇𝑘,𝑡+1) (8) 

𝑀𝑘,𝑡+1 = {
1, matched, Gaussian, distribution

0, others
 (9) 

𝜌 =
𝛼

𝜔𝑘,𝑡
 (10) 

Where:  
α…The learning rate;  
ρ…The parameter update speed;  
Mk, t+1…The adaptation of the observed values and 

the sub-model, where 1 indicates a match and 0 indi-
cates a mismatch. 

 Results and Analysis 

 Data Sets and Experiments 

This study utilizes operational data from a steam 
turbine generator in northern China (2023) as training 
data, comprising temperature measurements from 48 
monitoring points with a 1-minute sampling interval. 
The raw data undergoes sliding window segmentation 
with a window length of 120 minutes and a step size 
of 30 minutes, resulting in time-series samples of 120 
data points per temperature sensor [21]. This process 
completes data preprocessing and feature extraction. 
Prior to fault diagnosis, the collected dataset (totaling 
800 initial samples) requires partitioning. To facilitate 
subsequent data augmentation, 80% of samples from 
each operational state of the guide vanes are allocated 
for augmented learning, while the remaining 20% 
serve as the test set. 

The deep learning experiments in this study were 
conducted on a computing platform equipped with an 
NVIDIA RTX 4080 GPU, utilizing Python 3.10 and 
PyTorch 2.1 as the primary development environ-
ment. The training process employed the Adam opti-
mizer with an initial learning rate of 1e-4, a batch size 
of 16, and a maximum of 100 training epochs, incor-
porating early stopping to prevent overfitting. The 
Transformer model was configured with a hidden la-
yer dimension of 256, 4 attention heads, and 3 layers. 
All experiments were executed on the Ubuntu 22.04 
operating system. The variations of the loss values du-
ring the training process are shown in Figure 3. 

 

Fig. 3 The change of the loss value 

 Analysis of Experimental Results 

The results of the ablation experiment are shown 
in Table 1. The ablation study results demonstrate that 
each introduced module significantly enhances model 
performance. The baseline Transformer model (wit-
hout optimizations) achieved Precision, Recall, and 
Accuracy scores of 86.2%, 84.2%, and 87.4% respecti-
vely. After incorporating the physics-guided normali-
zation method (LPGN), these metrics improved to 
88.1%, 86.9%, and 89.6%, confirming LPGN's 
effectiveness in enhancing thermal anomaly detection. 
Subsequent integration of the enhanced Transformer 
architecture yielded more substantial gains - Precision 
sharply increased to 93.5% while Accuracy reached 
93.3%, indicating superior temporal feature extraction 
capabilities. The final configuration, which added 
Gaussian Mixture Model (GMM) for feature distri-
bution modeling and post-processing, achieved 97.6% 
Precision and 96.5% Accuracy, significantly outper-
forming other combinations and demonstrating 
GMM's exceptional discriminative power for abnor-
mal patterns. Collectively, the synergistic effects of 
these modules substantially improved both the ac-
curacy and robustness of stator thermal fault de-
tection. 
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Tab. 1 Ablation experiment results 

Model Precision Recall Accuracy 

Base 86.2 84.2 87.4 

Base+ LPGN 88.1 86.9 89.6 

Base+LPGN+Improved Transformer 93.5 88.1 93.3 

Base+LPGN+Improved Transformer+GMM 97.6 90.3 96.5 

 
For comparative analysis, we concurrently trained 

both ARIMA (AutoRegressive Integrated Moving 
Average) and LSTM (Long Short-Term Memory) mo-
dels. The predictive performance was evaluated by 
calculating the average Root Mean Square Error 

(RMSE) across test datasets, where lower RMSE va-
lues indicate stronger algorithmic representation capa-
bilities. Table 2 presents the comparative RMSE re-
sults of these different prediction algorithms.

Tab. 2 Comparative test results 

Algorithm RMSE  

ARIMA 0.0625 

LSTM 0.0762 

Ours 0.0438 

 
The RMSE (Root Mean Square Error) results re-

veal significant performance differences among pre-
diction algorithms for stator thermal fault detection. 
The ARIMA model achieved an RMSE of 0.0625, out-
performing LSTM's 0.0762 but remaining higher than 
our proposed method's 0.0438. As a conventional 
time-series analysis approach, ARIMA suits linear and 
weakly nonlinear sequence modeling but struggles to 
capture the complex nonlinear dynamics and long-
term dependencies in stator temperature data, particu-
larly showing limitations in multivariate interactions 
and abrupt change prediction. While LSTM, as a clas-
sical recurrent neural network architecture, possesses 
nonlinear processing and long-sequence dependency 
capabilities, its suboptimal performance in this task 
stems from insufficient sensitivity to local anomalies 
and inadequate extraction of multi-scale spatial ther-
mal features. Additionally, LSTM's complex training 
process with parameter redundancy often leads to 
overfitting or gradient vanishing issues. In contrast, 
our method integrates physics-guided normalization 
(LPGN), enhanced Transformer architecture, and 
GMM probabilistic modeling, demonstrating superior 
advantages in critical temporal feature extraction, ano-
maly response, and stability - ultimately achieving the 
lowest RMSE and exhibiting stronger predictive ac-
curacy and generalization capability. 

 Conclusion 

This study proposes an integrated detection met-
hod combining Physics-Guided Normalization 
(LPGN), enhanced Transformer architecture, and 
Gaussian Mixture Model (GMM) for thermal fault de-
tection in the turbine generator stators. The incorpo-
ration of localized physical information for feature 
normalization significantly improves the model's sen-
sitivity to abnormal temperature rise patterns. The op-
timized Transformer structure further enhances the 

extraction efficiency of critical temporal features, 
while the integration of GMM endows the output la-
yer with superior distribution modeling and anomaly 
discrimination capabilities. Ablation experiments de-
monstrate that the progressive integration of these 
modules substantially improves key metrics including 
Precision, Recall, and Accuracy. Compared with con-
ventional ARIMA and LSTM approaches, the propo-
sed method achieves optimal RMSE performance, va-
lidating its superior robustness in complex nonlinear 
scenarios. Overall, this framework not only advances 
the accuracy and reliability of thermal fault detection, 
but also establishes a robust technical pathway for in-
telligent diagnostic systems in practical power equip-
ment health monitoring. 
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