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This study proposes a multi-stage intelligent diagnostic approach integrating Physics-Guided Normali-
zation (LPGN), enhanced Transformer networks, and Gaussian Mixture Models (GMM) for thermal fault
detection in turbine generator stators. The methodology sequentially performs the following steps: (1)
enhances localized anomaly features in temperature data through LPGN, (2) efficiently extracts temporal
patterns via the optimized Transformer architecture, and (3) achieves unsupervised fault classification
using GMM. Experimental results demonstrate the proposed method's superiority over conventional
ARIMA and LSTM models across multiple evaluation metrics, exhibiting a lower RMSE and a higher
detection accuracy. Ablation studies further validate the individual contributions of each component to
petformance improvement. This solution provides an efficient and reliable framework for intelligent ther-
mal monitoring in large rotating electrical machinery.
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1 Introduction

In a steam turbine generator, the rotor plays a cri-
tical role. Connected to the steam tutrbine, it rotates at
high speed under the turbine's drive, generating a
powerful rotating magnetic field in its windings [1].
This magnetic field interacts with the stator windings
and, based on the principle of electromagnetic in-
duction, induces alternating current in the stator.
Thus, the rotor is one of the core components respon-
sible for energy conversion in the generator, and its
petformance directly impacts the generator's effi-
ciency and stability [2-4].

Thermal fault detection in turbine generator sta-
tors is of great significance for ensuring the long-term
safe and stable operation of power units. As the pri-
mary power-generating component of a generator, the
stator's windings and core endure substantial thermal
loads during operation [5]. Undetected issues such as
cooling system failures, insulation aging, or localized
overloads can easily lead to overheating faults, poten-
tially resulting in severe consequences such as insula-
tion breakdown or equipment burnout.

However, stator thermal fault detection presents
several challenges: the concealed nature of fault loca-
tions, uneven heat distribution, and complex opera-
ting environments make it difficult for conventional
detection methods to achieve precise localization and
real-time eatly warning. Therefore, developing highly
sensitive and high-resolution temperature monitoring
technologies, along with intelligent diagnostic met-
hods, is key to improving the accuracy and efficiency
of stator thermal fault detection [6-7].

In summary, existing thermal fault detection met-
hods for turbine generator stators still exhibit limitati-
ons in handling complex temporal relationships, iden-
tifying localized temperature rise anomalies, and mo-
deling feature distributions, making it challenging to
meet the requirements for high-precision and robust
fault early-warning under actual operating conditions.
To address these challenges, this study proposes a
multi-stage intelligent detection approach that integra-
tes physics-guided normalization, an enhanced Trans-
former netwotk architecture, and Gaussian Mixtute
Models. This integrated methodology aims to compre-
hensively improve the model's capabilities in percei-
ving, modeling, and identifying stator thermal faults,
thereby achieving more accurate and stable thermal
anomaly prediction and diagnosis.

2 Related Work

Currently, thermal fault detection in turbine gene-
rator stators has become an important research di-
rection in power equipment condition monitoring and
intelligent operation and maintenance [8-9]. Research
efforts primarily focus on temperature sensing tech-
nologies, thermal field modeling and simulation, fault
feature extraction, and intelligent diagnostic methods.
Conventional techniques such as thermistors, thermo-
couples, and infrared imaging have been widely
adopted for field monitoring, yet they still exhibit cer-
tain limitations in real-time performance, resolution,
and anti-interference capability [10-12].
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In recent years, emerging technologies like Fiber
Bragg Grating (FBG) sensing and distributed tempe-
rature sensing (DTS) have gained traction, offering
higher sensitivity and spatially distributed monitoring
capabilities [13]. Meanwhile, the integration of artifi-
cial intelligence and big data analytics has enabled in-
telligent fault identification and trend prediction, ma-
king it a key research focus.

Eyha et al. [14] propose a non-invasive diagnostic
method for detecting inter-turn short circuit ITSC)
and dynamic eccentricity (DE) faults in excitation win-
dings. This method, based on advanced analysis tech-
niques of stray magnetic field signals, can be imple-
mented during generator operation, enabling accurate
monitoring of the rotor excitation winding condition.
It also generates characteristic diagnostic maps that
facilitate the identification of potential ITSC faults.
Michalski et al. [15] develop a hybrid fault detection
and diagnosis approach that incorporates unsupervi-
sed machine learning techniques, aiming to identify
faults before generator shutdown. By analyzing histo-
rical operational data from hydropower stations, the
method reveals patterns in fault development, thereby
aiding in understanding the evolution of fault mecha-
nisms and their potential consequences. El Idrissi et
al. [16] propose a non-destructive testing (NDT) met-
hod for diagnosing stator imbalance defects in in-
duction motors (IM), based on thermal imaging and
machine learning. This technique evaluates the ther-
mal distribution state within regions of interest (ROI)
by analyzing the temperature distribution on the sta-
tor’s outer surface, combined with multiple statistical
indicators, thus providing criteria to determine
whether the thermal distribution is abnormal. Stone et
al. [17] propose a health monitoring and fault identifi-
cation method for thermal degradation effects in the
insulation systems of form-wound stator coils.
Through periodic off-line inspections of these coils,
the researchers analyzed thermal aging data of the in-
sulation materials up to the point of failure. Attallah et
al. [18] develop an online non-invasive diagnostic
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approach for three-phase induction machines (IMs)
based on infrared thermography. This methodology
integrates three convolutional neural network (CNN)-
based deep learning architectures (Inception, Xcep-
tion, and MobileNet) to simultaneously identify the (1)
IM operational status, (2) fault types, and (3) the loca-
tion and severity of inter-turn faults (I'TFs).

Despite significant progress, existing methods still
face challenges in achieving high-precision detection
and early warning under complex operating conditi-
ons. To address these limitations, this paper proposes
a stator thermal fault detection model for steam tur-
bine generators, which integrates an improved Trans-
former architecture with a Gaussian mixture model to
enhance feature representation and anomaly discrimi-
nation.

3 Materials and Methods
3.1 Locally Physics-Guided Normalization

A Locally Physics-Guided Normalization (LPGN)
method integrating physical priors with local trend
enhancement is proposed for preprocessing thermal
fault detection data in turbine generator stators,
effectively improving subsequent Transformer model
learning. While conventional normalization methods
(e.g., Min-Max or Z-score) can standardize data distri-
butions, they fail to account for physical characteris-
tics of temperature fields, such as: (1) varying thermal
inertia across stator regions, (2) thermal diffusion
coupling effects, and (3) potential masking of anoma-
lies by global averaging. The proposed LPGN method
synergistically combines local trend enhancement with
thermal-physical structural guidance, enabling heigh-
tened model sensitivity to subtle yet critical tempera-
ture rise anomalies.

Given the original temperature sequence T = {T},
Ta,..., Tn} with corresponding spatial positions X =
{X1, X2,..., Xn}, the normalization method is defined as
follows:
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Where: a, B... Tunable hyperparameters (x=0.1, B=1e-5);
Ti... The local sliding window mean centered at N()... The neighborhood set of point i (spatially
point i; topologically connected).

o...The corresponding local standard deviation;
Di...The estimated thermal diffusion coefficient at
that location (reflecting thermal stability);

Compared to global means, local means exhibit
greater sensitivity to abrupt anomalies, the incorpora-
tion of thermal diffusion coefficient D; directs
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network attention to thermally unstable, failure-prone
regions, the B parameter controls amplification effects
under minimal standard deviation to maintain nume-
rical stability. This approach is well-suited for spatio-
temporal temperature field inputs and enhances dyna-
mic feature extraction in Transformer-based models.

3.2 Improved Transformer model

In recent years, large models with Transformer
networks as their core architecture have garnered sig-
nificant attention due to their outstanding creativity
and logical reasoning capabilities. The Transformer
network introduces a self-attention mechanism that
enables more effective and efficient learning of inter-
relationships within input sequences [19]. Additiona-
lly, the parallel processing of positional information in
Transformer networks substantially improves training
speed and efficiency. To enhance the prediction ac-
curacy of braking torque in the Transformer encoder,
we have improved the encoder component by desig-
ning a parallel module based on a gated mechanism
that combines self-attention and convolutional neural
networks. This module separately extracts global fea-
tures through the self-attention mechanism and local
features via convolutional neural networks. Figure 1
illustrates the improved Transformer structure with a
feature fusion gate.
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Fig. 11mprove the Transformer structure diagram

Simply incorporating global and local features pro-
ves insufficient to enhance the Transformer's pre-
diction accuracy. To address this limitation, we intro-
duce a gating mechanism and propose an adaptive fe-
ature fusion approach tailored for multi-dimensional

characteristics, whose architecture is depicted in Fi-
gure 2.
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Fig. 2 Feature fusion gating structure diagram

The fusion process consists of three key stages:
First, during the weight computation phase, gate con-
trol weights are generated by applying Sigmoid activa-
tion to input feature hy, which quantitatively evaluate
the importance of another feature hy. Subsequently, in
the adaptive fusion phase, these weights undergo ele-
ment-wise multiplication with h, before being added
to hy, achieving dynamic feature integration. Finally,
the fused features are transformed through a linear
mapping layer to produce the final output [20]. This
architecture effectively regulates the relative influence
of different features during fusion, thereby enhancing
the model's capability to extract critical information.

3.3 Gaussian Mixture Model

By modeling the temporal features extracted by the
Transformer, the Gaussian Mixture Model (GMM)
can represent them as a mixed probability model com-
posed of multiple Gaussian distributions, thereby
effectively distinguishing between normal operating
states and potential thermal fault characteristics. This
approach requires minimal prior labeling, making it
suitable for unsupervised or semi-supervised
scenarios, and can autonomously learn the distri-
bution structure within the feature space, demonstra-
ting high sensitivity to subtle and concealed thermal
anomalies. By combining the powerful feature ex-
traction capabilities of the Transformer with the pro-
babilistic modeling advantages of GMM, the method
achieves high-precision identification and early war-
ning of stator thermal faults. The process of the Gaus-
sian mixture model is as follows:

K
P(X,) = Z i, (Xe i tr Cree) “
=1

Where:

K...The number of Gaussian distributions, which
corresponds to the quantity of sub-models in the mi-
xture model;

P(Xy)... The probability of observing value X; at
time t;

Wkt .- The distribution weight at time t, signifying
the likelihood of a sample belonging to that particular

sub-model;

NX¢, fiots Ciot) - - - The probability density function;

Hkst---The expectation of the Gaussian distri-
bution;

Ck.t... The covariance at time t.

The number of Gaussian distributions used as the
background model is defined as follows:
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b
B = arg, min Z Wit > T 5)
k=1
Where: The way the new observations update the Gaussian
Ti... The set distribution weight threshold. distribution is as follows:
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Where:

«...The learning rate;

o...The parameter update speed;

My, ¢+1... The adaptation of the observed values and
the sub-model, where 1 indicates a match and 0 indi-
cates a mismatch.

4 Results and Analysis
4.1 Data Sets and Experiments

This study utilizes operational data from a steam
turbine generator in northern China (2023) as training
data, comprising temperature measurements from 48
monitoring points with a 1-minute sampling interval.
The raw data undergoes sliding window segmentation
with a window length of 120 minutes and a step size
of 30 minutes, resulting in time-series samples of 120
data points per temperature sensor [21]. This process
completes data preprocessing and feature extraction.
Prior to fault diagnosis, the collected dataset (totaling
800 initial samples) requires partitioning. To facilitate
subsequent data augmentation, 80% of samples from
each operational state of the guide vanes are allocated
for augmented learning, while the remaining 20%
serve as the test set.

The deep learning experiments in this study were
conducted on a computing platform equipped with an
NVIDIA RTX 4080 GPU, utilizing Python 3.10 and
PyTorch 2.1 as the primary development environ-
ment. The training process employed the Adam opti-
mizer with an initial learning rate of le-4, a batch size
of 16, and a maximum of 100 training epochs, incor-
porating early stopping to prevent overfitting. The
Transformer model was configured with a hidden la-
yer dimension of 256, 4 attention heads, and 3 layers.
All experiments were executed on the Ubuntu 22.04
operating system. The variations of the loss values du-
ring the training process are shown in Figure 3.
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Fig. 3 The change of the loss value
4.2 Analysis of Experimental Results

The results of the ablation experiment are shown
in Table 1. The ablation study results demonstrate that
each introduced module significantly enhances model
performance. The baseline Transformer model (wit-
hout optimizations) achieved Precision, Recall, and
Accuracy scores of 86.2%, 84.2%, and 87.4% respecti-
vely. After incorporating the physics-guided normali-
zation method (LPGN), these metrics improved to
88.1%, 86.9%, and 89.6%, confirming LPGN's
effectiveness in enhancing thermal anomaly detection.
Subsequent integration of the enhanced Transformer
architecture yielded more substantial gains - Precision
sharply increased to 93.5% while Accuracy reached
93.3%, indicating superior temporal feature extraction
capabilities. The final configuration, which added
Gaussian Mixture Model (GMM) for feature distri-
bution modeling and post-processing, achieved 97.6%
Precision and 96.5% Accuracy, significantly outper-
forming other combinations and demonstrating
GMM's exceptional discriminative power for abnor-
mal patterns. Collectively, the synergistic effects of
these modules substantially improved both the ac-
curacy and robustness of stator thermal fault de-
tection.
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Tab. 1 Ablation experiment results

Model Precision Recall | Accuracy
Base 86.2 84.2 87.4
Base+ LPGN 88.1 86.9 89.6
Base+LPGN+Improved Transformer 93.5 88.1 93.3
Base+LPGN+Improved Transformer+ GMM 97.6 90.3 96.5

For comparative analysis, we concurrently trained
both ARIMA (AutoRegressive Integrated Moving
Average) and LSTM (Long Short-Term Memoty) mo-
dels. The predictive performance was evaluated by
calculating the average Root Mean Square Error

Tab. 2 Comparative test results

(RMSE) across test datasets, where lower RMSE va-
lues indicate stronger algorithmic representation capa-
bilities. Table 2 presents the comparative RMSE re-
sults of these different prediction algorithms.

Algorithm RMSE
ARIMA 0.0625
LSTM 0.0762
Ours 0.0438

The RMSE (Root Mean Square Error) results re-
veal significant performance differences among pre-
diction algorithms for stator thermal fault detection.
The ARIMA model achieved an RMSE of 0.0625, out-
petforming LSTM's 0.0762 but remaining higher than
our proposed method's 0.0438. As a conventional
time-series analysis approach, ARIMA suits linear and
weakly nonlinear sequence modeling but struggles to
capture the complex nonlinear dynamics and long-
term dependencies in stator temperature data, particu-
larly showing limitations in multivariate interactions
and abrupt change prediction. While LSTM, as a clas-
sical recurrent neural network architecture, possesses
nonlinear processing and long-sequence dependency
capabilities, its suboptimal petformance in this task
stems from insufficient sensitivity to local anomalies
and inadequate extraction of multi-scale spatial ther-
mal features. Additionally, LSTM's complex training
process with parameter redundancy often leads to
overfitting or gradient vanishing issues. In contrast,
our method integrates physics-guided normalization
(LPGN), enhanced Transformer atchitecture, and
GMM probabilistic modeling, demonstrating supetior
advantages in critical temporal feature extraction, ano-
maly response, and stability - ultimately achieving the
lowest RMSE and exhibiting stronger predictive ac-
curacy and generalization capability.

5 Conclusion

This study proposes an integrated detection met-
hod combining Physics-Guided Normalization
(LPGN), enhanced Transformer architecture, and
Gaussian Mixture Model (GMM) for thermal fault de-
tection in the turbine generator stators. The incorpo-
ration of localized physical information for feature
normalization significantly improves the model's sen-
sitivity to abnormal temperature rise patterns. The op-
timized Transformer structure further enhances the

extraction efficiency of critical temporal features,
while the integration of GMM endows the output la-
yer with superior distribution modeling and anomaly
discrimination capabilities. Ablation experiments de-
monstrate that the progressive integration of these
modules substantially improves key metrics including
Precision, Recall, and Accuracy. Compared with con-
ventional ARIMA and LSTM approaches, the propo-
sed method achieves optimal RMSE performance, va-
lidating its superior robustness in complex nonlinear
scenarios. Overall, this framework not only advances
the accuracy and reliability of thermal fault detection,
but also establishes a robust technical pathway for in-
telligent diagnostic systems in practical power equip-
ment health monitoring.
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