DOI: 10.21062/mft.2023.001 © 2023 Manufacturing Technology. All rights reserved.

http://www.journalmt.com

Influence of Impurity Morphology on the Fatigue Strength of High-Purity Structural Steel Melted in an Electric Furnace

Tomasz Lipiński (0000-0002-1644-1308)

Faculty of Technical Sciences, University of Warmia and Masury in Olsztyn. Oczapowskiego 11, 10-719 Olsztyn Poland. E-mail: tomekl@uwm.edu.pl

A modern user requires low operating costs, but also reliability from machines and technical devices. Reliability during the service life depends on the quality of construction solutions, but also largely on the quality, properties and adaptation to the working conditions used in the construction of construction materials. During the operation of technical objects, their a highly predictable wear occurs. The problem is the phenomena of premature wear and damage of elements. The causes of failure of technical facilities are usually complex and depend on many factors. They can include the human factor and the one related to the quality, selection, production and technological processes of the materials used in the construction of the facility. In real technical facilities, many premature failures are caused by material fatigue, which is related to the imperfection of the material and the morphology of non-metallic inclusions. The paper presents the change in fatigue strength for rotational bending of high-purity structural steel. In order to diversify the matrix of inclusions, the steel was hardened and tempered at temperatures from 200°C to 600°C. The influence of impurity diameter and arithmetic average impurities space on the fatigue strength of industrially produced steel was investigated..

Keywords: Steel, Fatigue Strength, Impurities, Arc Furnace

1 Introduction

progress in manufacturing technology and available research methods recorded in recent years, along with the constantly growing demand for machines and technical devices characterized by high reliability, constitute the premise for conducting research on fatigue strength of construction materials [1-6]. Industrially produced steels contain in their chemical composition, in addition to alloying additives (which include Si, Mn, Cr, Mo, V, W, B and others), blends and impurities (such as S, P, O i inne) and other impurities introduced into the alloy as a result of Technological process (e.g. crumbs of furnace lining, chipping and ladle scale, etc.) as well as contaminants introduced during the reremelting of metal alloys that were already in operation (e.g. hard ceramic particles embedded in metal alloys) [7-8]. The technological process aims to remove impurities by filtration, refining, etc. [9-11]. However, it is not easy. The economics of steel production, and therefore the desire to reduce its production costs, also limits these possibilities. Each cleaning operation of the metal alloy increases the production cost and, consequently, the price [12]. In the metallurgical process, physicochemical reactions take place, as a result of which non-metallic phases, called non-metallic inclusions, are formed in the liquid alloy. The number of non-metallic inclusions depends on the amount of impurities and impurities in the alloy. The qualitative structure of these inclusions as well as their shape and dimensions result not only from the content of impurities [13-16], but also from the production process [17-21].

Many factors affect the fatigue strength of metal alloys. In the literature, the most common information is the size and type of stress, load amplitude, interaction frequency, material microstructure, surface condition (e.g. roughness, corrosion), microstructural defects, working conditions and environment and the shape of the element [22-29].

Currently, the literature provides many hypotheses regarding the influence of individual factors on the fatigue strength. Safety coefficients were developed to compensate for random events and imperfections in knowledge and calculation methods. However, the influence of the material quality on the fatigue strength cannot be ignored. There is contamination in real material produced under industrial conditions. The content and morphology of these impurities is also an important factor determining the fatigue strength and thus durability of the material. Non-metallic inclusions usually reduce the fatigue properties of metal alloys [30-35]. However, there are reports of their beneficial effects [36-37].

Unfortunately, non-metallic contaminants mainly play a negative role. Despite the great interest of researchers in determining the relationship between inclusions and strength, in particular fatigue strength, it was not possible to clearly define this relationship. The presented knowledge is based on hypotheses [38-45]. It was confirmed that the fatigue strength of metal alloys depends not only on its microstructure, but also on the quantity and quality of non-metallic inclusions. The main role is played by the size and distribution of impurities in the microstructure of the material [33, 46, 47]. Despite the existence of advanced computer techniques [48,49] and many studies, until now it has not been possible to connect the fatigue strength with the morphology of inclusions occurring in high plasticity steel. Thanks to this, the topic presented in the paper is still relevant.

The aim of the research was to simultaneously

investigate the influence of the average distance between inclusions and the relative volume of inclusions on the fatigue strength of high-purity structural steel with different microstructures.

2 Materials and methods

The test material was High-Purity Structural Steel Melted in an Electric Furnace with the addition of manganese, nickel, molybdenum and boron. It also contained phosphorus and sulfur impurity. The average content of individual alloying elements and impurities from 7 heats carried out in the electric arc furnace is shown in Table 1.

Tab. 1 Real chemical composition of the tested steel

С	Mn	Si	P	S	Cr	Ni	Мо	Cu	В
0.26	1.18	0.24	0.02	0.01	0.52	0.50	0.25	0.15	0.03

It was decided to realize different hardness and plasticity of steel by applying different tempering temperatures. The steel intended for testing was smelted in a 140-ton electric arc furnace with desulfurization. The melts were carried out in industrial conditions. The molten steel was poured into the ladle. Then, billets with a section of 100 mm x 100 mm were rolled from it. Samples were taken from these billets for further research. The samples were quenched and tempered. In the hardening process, the steel was austenitized at the temperature of 880°C for 30 minutes. From this temperature, the samples were cooled in water. Then the samples were divided into batches and tempered at the following temperatures: 200, 300, 400, 500 and 600°C for 120 minutes with air cooling. The fatigue strength test was carried out in the rotary bending process. The tests were carried out under load. The rotational speed of the bending machine was set at 600 revolutions per minute. The loading of the samples during bending was selected experimentally, taking into account the hardness of the steel. This load for appropriate tempering temperatures was: for 200°C - 650 MPa, for 300 to 500°C - 600 MPa and for 600°C - 540 MPa [15,16,31,32].

The chemical composition was determined on each of the heats using a LECO quantometer and traditional chemical analysis methods. The relative volume of non-metallic inclusions with a minimum diameter of 2 μ m was determined with a Quantimet video inspection microscope under 400x magnification. The relative total volume of non-metallic inclusions was determined by the chemical extraction method. The relative volume of inclusions in the range of up to 2 μ m was calculated analytically by subtracting from the total volume of inclusions the volume obtained by image analysis with a diameter greater than 2 μ m. The number of particles in the

range 2 µm and smaller was the difference between the number of all inclusions determined by chemical extraction and the number of inclusions measured by the video method.

Calculations of the relative volume of non-metallic inclusions were carried out assuming that the quotient of particle surfaces and the observation area is equal to the quotient of the volume of particles in the assumed volume and the assumed volume.

The quality of non-metallic inclusions on the cross-section of the samples was determined using the XRD method. As a result of the research, it was found that Al_2O_3 was an average of 41.4% of impurities. Next, in terms of quantity, SiO_2 was found - 14.7% on average. The other types of inclusions in the form (in order of decreasing share) were: Cr_2O_3 , CaO, FeO, MgO, MnO and constituted from 10% to 7% of the volume of all impurities. The qualitative structure of the particles present in the tested steel is presented in [13]. The distances between inclusions occurring in the tested α steel were calculated from the dependence (1). arithmetic average non-metallic inclusions space λ calculated in accordance to (2):

$$\alpha = \frac{\bar{d}}{\lambda} \tag{1}$$

Where:

 $ar{d}$...The average diameter of non-metallic inclusion [μ m],

 λ ...rithmetic mean distance between non-metallic inclusion [μ m].

$$\lambda = \frac{2}{3} \, \bar{\mathbf{d}} \left(\frac{1}{\mathbf{V}_0} - 1 \right) \tag{2}$$

Where:

 V_0 ...The relative volume of impurities [%].

The correlation analysis and the significance assessment of the r coefficients were performed using the t-Student probability distribution for the significance level $\alpha=0.05$ and the number of degrees of freedom f=n-1. The critical value of the Student's distribution for p=(n-1) and the 5% significance level for 7 heats is ta (0.05)=2.447.

The test results are presented in the form of a regression equation with the general form (3).

$$z_{go(tempered)} = a \cdot \alpha + b$$
 (3)

Where:

a...Size and distances between the impurities [-], a, b...Coefficients regresion equation [-].

3 Results and discussion

The total amount of impurities in the tested steels determined by the arithmetic mean of 7 heats was 0.188%, and its standard deviation was 0.0385%. Rotary bending fatigue strength high-purity structural steel melted in electric arc furnace after hardened with austenitized at temperature 880°C and tempered at 200°C as a relationship α taking into account the distance between the impurities present in the tested steel \bar{d} and the arithmetic mean distance between non-metallic inclusion λ is presented at Fig. 1. Its regression equation and correlation coefficient r is presented at (4).

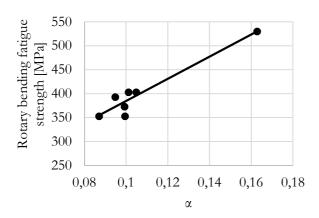


Fig. 1 Rotational bending fatigue strength of hardened and tempered steel at 200°C as a function of diameter and distance between inclusions

$$zgo_{(200)} = 2311.8 \cdot \alpha + 153.69, r=0.9566$$
 (4)

Rotary bending fatigue strength high-purity structural steel melted in electric arc furnace after hardened with austenitized at temperature 880° C and tempered at 200° C as a relationship α taking into account the distance between the impurities present in the tested steel d and the arithmetic mean distance between non-metallic inclusion λ is presented at Fig. 2. Its regression equation and correlation coefficient r is presented at (5).

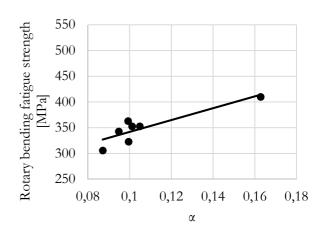


Fig. 2 Rotational bending fatigue strength of hardened and tempered steel at 300°C as a function of diameter and distance between inclusions

$$zgo_{(300)} = 1150.8 \cdot \alpha + 226.95, r=0.8812$$
 (5)

Rotary bending fatigue strength high-purity structural steel melted in electric arc furnace after hardened with austenitized at temperature 880° C and tempered at 200° C as relationship α taking into account the distance between the impurities present in the tested steel d and the arithmetic mean distance between non-metallic inclusion λ is presented at Fig. 3. Its regression equation and correlation coefficient r is presented at (6).

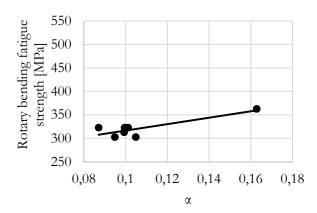


Fig. 3 Rotational bending fatigue strength of hardened and tempered steel at 400°C as a function of diameter and distance between inclusions

$$z_{go(400)} = 680.99 \cdot \alpha + 248.68, r = 0.8433$$
 (6)

Rotary bending fatigue strength high-purity structural steel melted in electric arc furnace after hardened with austenitized at temperature 880° C and tempered at 200° C as relationship α taking into account the distance between the impurities present in the tested steel d and the arithmetic mean distance between non-metallic inclusion λ is presented at Fig. 4. Its regression equation and correlation coefficient r is presented at (7).

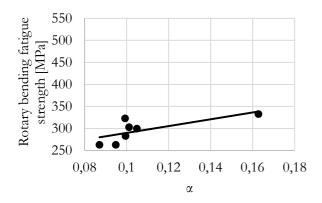


Fig. 4 Rotational bending fatigue strength of hardened and tempered steel at 500°C as a function of diameter and distance between inclusions

$$z_{go(500)} = 777.2 \cdot \alpha + 212.23, r = 0.7146$$
 (7)

Rotary bending fatigue strength high-purity structural steel melted in electric arc furnace after hardened with austenitized at temperature 880° C and tempered at 200° C as relationship α taking into account the distance between the impurities present in the tested steel d and the arithmetic mean distance between non-metallic inclusion λ is presented at Fig. 5. Its regression equation and correlation coefficient r is presented at (8).

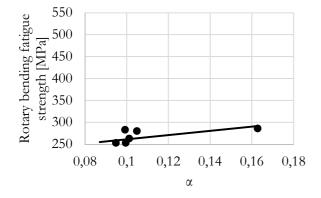


Fig. 5 Rotational bending fatigue strength of hardened and tempered steel at 600°C as a function of diameter and distance between inclusions

$$z_{go(600)} = 478.93 \cdot \alpha + 213.59, r = 0.6417$$
 (8)

The analysis of regression equations (4) - (8) and its correlation coefficients shows that the analyzed dependencies are well reflected by the first degree equation. By statistically analyzing the correlation coefficients, a strong a relationship is between bending fatigue strength and the alpha coefficient (two variables) was found. This relationship is stronger for the lower tempering temperatures. After the low tempering process at the temperature of 200°C, the steel has the microstructure of low-tempered martensite [31]. As the tempering temperature increases, the microstructure of the steel, which is

martensite, changes into medium-tempered martensite as a result of the transformation. Along with a further increase in the tempering temperature, high-tempered plastic martensite is formed. An increase in the tempering temperature causes an increase in plasticity and a decrease in hardness [31] due to the transformation of martensite.

Then the results of the research, a decrease in the level of correlation coefficients was observed along with an increase in the tempering temperature, therefore when the microstructure of the steel is closer to the diffusion one. Analyzing the regression equations for individual tempering temperatures, an increase in the α (3 - slope factor) coefficient was found with a decrease in the tempering temperature. With an increases the tempering temperature the steel, which is a matrix of non-metallic inclusions, gains plasticity. Thus, the relation matrix - non-metallic inclusion changes within a certain range [50]. By analyzing Fig. 1-Fig 5 with its regression equation (4) - (8) and its correlation coefficients, it was found that at lower tempering temperatures, and thus a harder matrix of pollutions, the accuracy of the analysis is higher. It follows that, apart from the lower complexity of the analysis of the results, the impact of pollutants on benging fatigue strength is greater. This is probably the reason for a thorough and quite simple analysis of the impact of impurities in the hard matrix on the benging fatigue strength of steel. This view confirms the great interest of researchers in steels of high hardness [18,29,34].

4 Conclusions

- The conducted tests in industrial conditions allow to bring the results and their analysis closer to the actual parameters prevailing in the industry.
- The α index relates the mean size of impurities with the mean distance between impurities and the relative volume of impurities, thus describing the influence of the morphology of pollution on the benging fatigue of steel.
- The strength of the influence of pollution depends on the hardness of the steel as a matrix of inclusions, and therefore the tempering temperature of the steel.

References

[1] HREN, I., MICHNA, Š., NOVOTNÝ, J., MICHNOVÁ, L. (2021). Comprehensive analysis of the coated component from a FORD engine. In: *Manufacturing Technology*, Vol.

- 21, No. 4, pp. 464 470. ISSN 1213-2489, 2787-9402
- [2] LENKOVSKIY, T.M., KULYK, V.V., DURIAGINA, Z.A., KOVALCHUK, R.A., TOPILNYTSKYY, V.H., VIRA, V.V., TEPLA, T.L. (2017) Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. In: *Archives of Materials Science and Engineering*, Vol. 84, No. 1, pp. 34 41. ISSN 1897-2764, 2300-8679
- [3] JOPEK, M. (2021). Determination of Carbon Steel Dynamic Properties. In: *Manufacturing Technology*, Vol. 21, No. 4, pp. 479 482. ISSN 1213-2489, 2787-9402
- [4] IVANYTSKYJ, Y.L., LENKOVSKIY, T.M., MOLKOV, Y.V., KULYK, V.V., DURIAGINA, Z.A. (2016). Influence of 65G steel microstructure on crack faces friction factor under mode fatigue fracture. In: *Archives of Materials Science and Engineering*, Vol. 82, No. 2, pp. 49 56. ISSN 1897-2764, 2300-8679
- [5] BLIKHARSKYY, Z., BRÓZDA, K., SELEJDAK, J. (2018). Effectivenes of Strengthening Loaded RC Beams with FRCM System. In: Archives of Civil Engineering, Vol. 64 No. 3, pp. 3 - 13. ISSN 1230-2945, 2300-3103
- [6] KOVÁČIKOVÁ, P., DUBEC, A., KURICOVÁ, J. (2021). The microstructural study of a damaged motorcycle gear wheel. In Manufacturing Technology, Vol. 21, No 1, pp. 83 -90. ISSN 1213-2489, 2787-9402
- [7] ADAMCZYK, M., NIŻNIK-HARAŃCZYK, B., POGORZAŁEK, J. (2016). Influence of steel smelting technology with the addition of 3 ÷ 5% Al alloy on the type and morphology of non-metallic inclusions. In: *Works of the Iron Metallurgy Institute (in Polish)*, Vol. 68, No. 2, pp. 24 32. ISSN 2657-747X
- [8] SZCZOTOK, A., PIETRASZEK, J., RADEK, N. (2017). Metallographic Study and Repeatability Analysis of γ' Phase Precipitates in Cored, Thin-Walled Castings Made from IN713C Superalloy. In: *Archives of Metallurgy and Materials*, Vol. 62, No. 2, pp. 595-601. ISSN 1733-3490, 2300-1909
- [9] KALISZ, D., MIGAS, P., KARBOWNICZEK, M., MOSKAL, M., HORNIK, A. (2020). Influence of selected deoxidizers on chemical composition of molten inclusions in liquid steel. In: *Journal of Materials Engineering and Performance*, Vol. 29, No. 3, pp. 1479 -1487. ISSN 1059-9495, 1544-1024

- [10] WOŹNY, A. (2020). Selected problems of managing work safety-case study. In: *Production Engineering Archives*, Vol. 26, No. 3, pp. 99 103. ISSN 2353-7779
- [11] GULYAKOV, V.S., VUSIKHIS, A. S., KUDINOV, D. Z. (2012). Nonmetallic Oxide Inclusions and Oxygen in the Vacuum_Jet Refining of Steel. In: *Steel in Translation*, Vol. 42, No. 11, pp. 781 783. ISSN 0967-0912
- [12] KRYNKE, M. (2021) Management optimizing the costs and duration time of the process in the production system. In: *Production Engineering Archives*, Vol. 27, No. 3, pp. 163 170. ISSN 2353-7779
- [13] LIPIŃSKI, T., WACH, A. (2014). Influence of outside furnace treatment on purity medium carbon steel. In: METAL 2014 23rd International Conference on Metallurgy and Materials, Conference Proceedings, pp. 738-743. ISSN 2694-9296
- [14] ROIKO, A., HÄNNINEN, H., VUORIKARI, H. (2012). Anisotropic distribution of nonmetallic inclusions in forged steel roll and its influence on fatigue limit. In: *International Journal of Fatigue*, Vol. 41, pp.158-167. ISSN 0142-1123, 1879-3452
- [15] LIPIŃSKI, T. (2018). The effect of the diameter and spacing between impurities on the fatigue strength coefficient of structural steel. In: Archives of Metallurgy and Materials, Vol. 63, No. 1, pp. 519 - 524. ISSN 1733-3490, 2300-1909
- [16] LIPIŃSKI, T., WACH, A. (2015). Effect Size Proportions and Distances Between the Nonmetallic Inclusions on Bending Fatigue Strength of Structural Steel. In: 24td International Conference on Metallurgy and Materials Metal 2015 Brno TANGER Ltd., Ostrava. Conference proceedings (2015) pp. 754 760. ISSN 2694-9296
- [17] BRICÍN, D., KŘÍŽ, A. (2021). Influence of the Boriding Process on the Properties and the Structure of the Steel S265 and the Steel X6CrNiTi18-10. In: *Manufacturing Technology*, Vol. 21, No. 1, pp. 37 44. ISSN 1213-2489, 2787-9402
- [18] DONG, Z., QIAN, D., YIN, F., WANG, F. (2021). Enhanced Impact Toughness of Previously Cold Rolled High-Carbon Chromium Bearing Steel with Rare Earth Addition. In: *Journal of Materials Engineering and Performance*, 30(11), 8178 8187. ISSN 1059-9495, 1544-1024

- [19] CZAJKOWSKA, A., INGALDI, M. (2022). Influence of Steel Fibers Content on Selected Mechanical Properties - Experimental Tests. In: *Manufacturing Technology*, Vol. 22, No. 3, pp. 267 – 278. ISSN 1213-2489, 2787-9402
- [20] WANG, X. (2017). Study on Rolling Process and Fatigue Performance of Hot Rolled High Strength Steel for Wheel. In: *Chemical Engineering Transactions*, Vol. 59, pp. 229 234. ISSN 2283-9216
- [21] CHUBUKOV, M.Y., RUTSKIY, D.V., USKOV, D.P. (2019). Analyzing the features of non-metallic inclusion distribution in Ø410 mm continuously cast billets of low carbon steel grades. In: *Materials Science Forum*, Vol. 973, pp. 21 25). Trans Tech Publications Ltd. ISSN 0255-5476
- [22] CHAN, K.S. (2010). Roles of microstructure in fatigue crack initiation. In: *International Journal of Fatigue*, Vol. 32, pp. 1428 1447. ISSN 0142-1123, 1879-3452
- [23] RADEK, N., TOKAR, D., KALINOWSKI, A., PIETRASZEK, J. (2021). Influence of laser texturing on tribological properties of DLC coatings. In: *Production Engineering Archives*, vol.27, no.2, pp.119 123. ISSN: 23535156
- [24] LIPIŃSKI, T. (2017). Roughness of 1.0721 steel after corrosion tests in 20% NaCl. In: *Production Engineering Archives*, Vol. 15, No. 15, pp. 27 30. ISSN 2353-7779
- [25] ULEWICZ, R., SZATANIAK, P., NOVY, F. (2014). Fatigue properties of wear resistant martensitic steel. In: METAL 2014 23rd International Conference on Metallurgy and Materials, Conference Proceedings, pp. 784 789. ISSN 2694-9296
- [26] XIAO-FEI, H., CHENG-FEI, H., LE, X., MAO-QIU, W. (2021). Effect of total oxygen on the nonmetallic inclusion of gear steel. In: *Chinese Journal of Engineering*, Vol. 43, No. 4, pp. 537 544. ISSN 2095-9389
- [27] BLIKHARSKYY, Y., SELEJDAK, J., KOPIIKA, N. (2021). Corrosion fatigue damages of rebars under loading in time. In: *Materials*, Vol. 14, No. 12, pp. 3416. ISSN 2053-1583
- [28] MACEK, W., SZALA, M., TREMBACZ, J., BRANCO, R., COSTA, J. (2020). Effect of non-zero mean stress bending-torsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars, In: *Production Engineering Archives*, Vol. 26, No. 4, pp. 167 173. ISSN 2353-7779

- [29] HUA L., DENG S., HAN X., HUANG S. (2013). Effect of material defects on crack initiation under rolling contact fatigue in a bearing ring. In: *Tribology International*, Vol. 66, pp. 315 323. ISSN 0301-679X 1879-2464
- [30] QAYYUM, F., UMAR, M., ELAGIN, V., KIRSCHNER, M., HOFFMANN, F., GUK, S., PRAHL, U. (2022). Influence of nonmetallic inclusions on local deformation and damage behavior of modified 16MnCrS5 steel. In: *Crystals*, Vol. 12, No. 2, pp. 281. ISSN 2073-4352
- [31] LIPIŃSKI, T., WACH, A. (2015). The effect of fine non-metallic inclusions on the fatigue strength of structural steel Terms and conditions. In: *Archives of Metallurgy and Materials*, Vol. 60, No. 1, pp. 65 69. ISSN 1733-3490, 2300-1909
- [32] LIPIŃSKI, T., WACH, A., (2015). Effect of the impurities on the bending fatigue strength of structural steel. In: 14th International Scientific Conference Engineering for Rural Development Proceedings vol. 14, Jelgava, 20.-22.05.2015, pp. 784 789. ISSN 1691-5976
- [33] LIPIŃSKI, T., ULEWICZ, R. (2021). The effect of the impurities spaces on the quality of structural steel working at variable loads. In: *Open Engineering*, Vol. 11, No. 1, pp. 233 238. ISSN 2391-5439
- [34] HALFORD, G.L. (1986). Low cycle thermal fatigue. NASA
- [35] SRIVASTAVA, A., PONSON, L., OSOVSKI, S., BOUCHAUD, E., TVERGAARD, V., NEEDLEMAN, A. (2014). Effect of inclusion density on ductile fracture toughness and roughness. In: *Journal of the Mechanics and Physics of Solids Vol. 63*, pp. 62 79.ISSN 0022-5096, 1873-4782
- [36] LIPIŃSKI, T. (2015). Effect of the spacing between submicroscopic oxide impurities on the fatigue strength of structural steel. In: Archives of Metallurgy and Materials, Vol. 60, No. 3B, pp. 2385 - 2390. ISSN 1733-3490, 2300-1909
- [37] MURAKAMI, Y. (2002). Metal fatigue. Effects of small defects and inclusions. Elsevier
- [38] MURAKAMI, Y., NOMOTO, T., UEDA, T. (1999). Factors influencing the mechanism of super long fatigue failure in steels. In: Fatigue & Fracture of Engineering Materials & Structures, Vol. 22, pp.581–590

- [39] MURAKAMI, Y., KODAMA, S., KONUMA, S. (1989). Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels, I: basic fatigue mechanism and fatigue fracture stress and the size and location of non-metallic inclusions, *International Journal of Fatigue*, Vol. 11, No. 5, pp. 291–298. ISSN 0142-1123, 1879-3452
- [40] GU, C., LIU, W.Q., LIAN, J.H., BAO, Y.P. (2021). In-depth analysis of the fatigue mechanism induced by inclusions for highstrength bearing steels. In: *International Journal of Minerals Metallurgy and Materials* Vol. 28, No 5, pp. 826-834. ISSN 1674-4799
- [41] MALASHCHENKO, V., STRILETS, O., STRILETS, V., KŁYSZ, S. (2019). Investigation of the energy effectiveness of multistage differential gears when the speed is changed by the carrier. *Diagnostyka*, Vol. 20, No. 4, pp. 57 64. ISSN 1641-6414
- [42] FOLETTI S., BERETTA S., TARANTINO M.G. (2014). Multiaxial fatigue criteria versus experiments for small crack under rolling contact fatigue, In: *International Journal of Fatigue*, Vol. 58, pp. 181 182. ISSN 0142-1123, 1879-3452
- [43] SHI, Z.Y., LI, J.J., ZHANG, X.D., SHANG, C.J., CAO, W.Q. (2022). Influence Mechanisms of Inclusion Types on Rotating Bending Fatigue Properties of SAE52100 Bearing Steel. In: *Materials*, Vol. 15, No 14, Article Number 5037. ISSN 2053-1583
- [44] MITCHELL, M.R. (1996). Fundamentals of Modern Fatigue Analysis for Design. Fatigue and

- Fracture, Vol. 19, ASM Handbook, ASM International
- [45] EVANS, M.H., RICHARDSON, A.D., WANG, L., WOOD, R.J.K., ANDERSON, W.B. (2014). Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation. In: *Tribology International* Vol. 75, pp. 87 97. ISSN 0301-679X 1879-2464
- [46] LIPIŃSKI, T., WACH, A. (2020). Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric furnace. In: *Production Engineering Archives* Volume 26, Issue 3, pp. 88 - 91. ISSN: 23535156
- [47] LIPINSKI, T. (2018). Bending fatigue strength coefficient the low carbon steel with impurities. In: *Production Engineering Archives*, Vol. 21, No. 21, pp. 20 23. ISSN 2353-7779
- [48] CUARTAS, M., RUIZ, E., FERREÑO, D., SETIÉN, J., ARROYO, V., GUTIÉRREZ-SOLANA, F. (2021). Machine learning algorithms for the prediction of non-metallic inclusions in steel wires for tire reinforcement. In: *Journal of Intelligent Manufacturing*, Vol. 32, No. 6, pp. 1739 1751. ISSN 0956-5515, 1572-8145
- [49] PIETRASZEK, J., GADEK-MOSZCZAK, A., RADEK, N. (2014). The estimation of accuracy for the neural network approximation in the case of sintered metal properties. *Studies* in *Computational Intelligence*, Vol. 513, pp. 125 -134. ISSN 1860-949X
- [50] SURESH, S. (1998). Fatigue of Materials. Cambridge University Press: Cambridge, UK. ISBN 9780511806575