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A modern user requires low operating costs, but also reliability from machines and technical devices.
Reliability during the service life depends on the quality of construction solutions, but also largely on the
quality, properties and adaptation to the working conditions used in the construction of construction
materials. During the operation of technical objects, their a highly predictable wear occurs. The problem
is the phenomena of premature wear and damage of elements. The causes of failure of technical facilities
are usually complex and depend on many factors. They can include the human factor and the one related
to the quality, selection, production and technological processes of the materials used in the construction
of the facility. In real technical facilities, many premature failures are caused by material fatigue, which
is related to the imperfection of the material and the morphology of non-metallic inclusions. The paper
presents the change in fatigue strength for rotational bending of high-purity structural steel. In order to
diversify the matrix of inclusions, the steel was hardened and tempered at temperatures from 200°C to
600°C. The influence of impurity diameter and arithmetic average impurities space on the fatigue
strength of industrially produced steel was investigated..
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1 Introduction alloy. The qualitative structure of these inclusions as
well as their shape and dimensions result not only
from the content of impurities [13-16], but also from
the production process [17-21].

Many factors affect the fatigue strength of metal
alloys. In the literature, the most common information
is the size and type of stress, load amplitude,
interaction frequency, material microstructure, surface
condition (e.g. roughness, corrosion), microstructural
defects, working conditions and environment and the
shape of the element [22-29].

Currently, the literature provides many hypotheses
regarding the influence of individual factors on the
fatigue strength. Safety coefficients were developed to
compensate for random events and imperfections in
knowledge and calculation methods. However, the
influence of the material quality on the fatigue strength
cannot be ignored. There is contamination in real
material produced under industrial conditions. The
content and morphology of these impurities is also an
important factor determining the fatigue strength and
thus durability of the material. Non-metallic inclusions

The dynamic progress in manufacturing
technology and available research methods recorded
in recent years, along with the constantly growing
demand for machines and technical devices
characterized by high reliability, constitute the premise
for conducting research on fatigue strength of
construction materials [1-6]. Industrially produced
steels contain in their chemical composition, in
addition to alloying additives (which include Si, Mn,
Cr, Mo, V, W, B and others), blends and impurities
(suchas S, P, O iinne) and other impurities introduced
into the alloy as a result of Technological process (e.g.
crumbs of furnace lining, chipping and ladle scale, etc.)
as well as contaminants introduced during the re-
remelting of metal alloys that were already in
operation (e.g. hard ceramic particles embedded in
metal alloys) [7-8]. The technological process aims to
remove impurities by filtration, refining, etc. [9-11].
However, it is not easy. The economics of steel
production, and therefore the desire to reduce its

production costs, also limits these possibilities. Each usually reduce the fatigue properties of metal alloys

cleaning operation of the metal alloy inc.reases the [30-35]. However, there are reports of their beneficial
production cost and, consequently, the price [12]. In effects [36-37]

the metallurgical process, physicochemical reactions
take place, as a result of which non-metallic phases,
called non-metallic inclusions, are formed in the liquid
alloy. The number of non-metallic inclusions depends
on the amount of impurities and impurities in the

Unfortunately, non-metallic contaminants mainly
play a negative role. Despite the great interest of
researchers in determining the relationship between
inclusions and strength, in particular fatigue strength,
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it was not possible to clearly define this relationship.
The presented knowledge is based on hypotheses [38-
45]. It was confirmed that the fatigue strength of metal
alloys depends not only on its microstructure, but also
on the quantity and quality of non-metallic inclusions.
The main role is played by the size and distribution of
impurities in the microstructure of the material [33, 40,
47]. Despite the existence of advanced computer
techniques [48,49] and many studies, until now it has
not been possible to connect the fatigue strength with
the morphology of inclusions occurring in high
plasticity steel. Thanks to this, the topic presented in
the paper is still relevant.
The aim of the research was to simultaneously

Tab. 1Real chemical composition of the tested steel

investigate the influence of the average distance
between inclusions and the relative volume of
inclusions on the fatigue strength of high-purity
structural steel with different microstructures.

2 Materials and methods

The test material was High-Purity Structural Steel
Melted in an Electric Furnace with the addition of
manganese, nickel, molybdenum and boron. It also
contained phosphorus and sulfur impurity. The
average content of individual alloying elements and
impurities from 7 heats carried out in the electric arc
furnace is shown in Table 1.

C Mn Si P S

Cr Ni Mo Cu B

0.26 1.18 0.24 0.02 0.01

0.52 0.50 0.25 0.15 0.03

It was decided to realize different hardness and
plasticity of steel by applying different tempering
temperatures. The steel intended for testing was
smelted in a 140-ton electric arc furnace with
desulfurization. The melts were carried out in
industrial conditions. The molten steel was poured
into the ladle. Then, billets with a section of 100 mm
x 100 mm were rolled from it. Samples were taken
from these billets for further research. The samples
were quenched and tempered. In the hardening
process, the steel was austenitized at the temperature
of 880°C for 30 minutes. From this temperature, the
samples were cooled in water. Then the samples were
divided into batches and tempered at the following
temperatures: 200, 300, 400, 500 and 600°C for 120
minutes with air cooling. The fatigue strength test was
carried out in the rotary bending process. The tests
were carried out under load. The rotational speed of
the bending machine was set at 600 revolutions per
minute. The loading of the samples during bending
was selected experimentally, taking into account the
hardness of the steel. This load for appropriate
tempering temperatures was: for 200°C - 650 MPa, for
300 to 500°C - 600 MPa and for 600°C - 540 MPa
[15,16,31,32].

The chemical composition was determined on
each of the heats using a LECO quantometer and
traditional chemical analysis methods. The relative
volume of non-metallic inclusions with a minimum
diameter of 2 um was determined with a Quantimet
video  inspection  microscope under  400x
magnification. The relative total volume of non-
metallic inclusions was determined by the chemical
extraction method. The relative volume of inclusions
in the range of up to 2 um was calculated analytically
by subtracting from the total volume of inclusions the
volume obtained by image analysis with a diameter
greater than 2 pm. The number of particles in the

range 2 um and smaller was the difference between
the number of all inclusions determined by chemical
extraction and the number of inclusions measured by
the video method.

Calculations of the relative volume of non-metallic
inclusions were carried out assuming that the quotient
of particle surfaces and the observation area is equal
to the quotient of the volume of particles in the
assumed volume and the assumed volume.

The quality of non-metallic inclusions on the
cross-section of the samples was determined using the
XRD method. As a result of the research, it was found
that ALOs was an average of 41.4% of impurities.
Next, in terms of quantity, SiO2 was found - 14.7% on
average. The other types of inclusions in the form (in
order of decreasing share) were: Cr2O3, CaO, FeO,
MgO, MnO and constituted from 10% to 7% of the
volume of all impurities. The qualitative structure of
the particles present in the tested steel is presented in
[13]. The distances between inclusions occurring in
the tested o steel were calculated from the dependence
(1). arithmetic average non-metallic inclusions space A
calculated in accordance to (2):

©)

o=

> al

Where:

d ../The average diameter of non-metallic
inclusion [um],

A...rithmetic mean distance between non-metallic
inclusion [um].

x:%&(i—1) )

Where:
V... The relative volume of impurities [%5].
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The correlation analysis and the significance
assessment of the r coefficients were performed using
the t-Student probability distribution for the
significance level « = 0.05 and the number of degrees
of freedom f = n-1. The critical value of the Student's
distribution for p = (n-1) and the 5% significance level
for 7 heats is ta (0.05) = 2.447.

The test results are presented in the form of a
regression equation with the general form (3).

Zgo(tempered)— A * & +b (3)

Where:
a...Size and distances between the impurities [-],
a, b...Coefficients regresion equation [-|.

3 Results and discussion

The total amount of impurities in the tested steels
determined by the arithmetic mean of 7 heats was
0.188%, and its standard deviation was 0.0385%.
Rotary bending fatigue strength high-purity structural
steel melted in electric arc furnace after hardened with
austenitized at temperature 880°C and tempered at
200°C as a relationship o taking into account the
distance between the impurities present in the tested
steel d and the arithmetic mean distance between
non-metallic inclusion A is presented at Fig. 1. Its
regression equation and correlation coefficient r is
presented at (4).
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Fig. 1Rotational bending fatigne strength of hardened and
tempered steel at 200°C as a function of diameter and distance
between inclusions

ZgO(z(){)): 2311.8 - o + 15369, r=0.9566 (4)

Rotary bending fatigue strength high-purity
structural steel melted in electric arc furnace after
hardened with austenitized at temperature 880°C and
tempered at 200°C as a relationship a taking into
account the distance between the impurities present in
the tested steel d and the arithmetic mean distance
between non-metallic inclusion A is presented at Fig.
2. Its regression equation and correlation coefficient ¢
is presented at (5).

5 550
&

5 500

o 450

&

& T 400

en

£'2 350

=) [ J

2 300 e

e

g 250

& 008 01 012 014 016 0,18

o

Fig. 2 Rotational bending fatigne strength of hardened and
tempered steel at 300°C as a function of diameter and distance
between inclusions

zgo@oo) = 1150.8 - o + 226.95, r=0.8812 5)

Rotary bending fatigue strength high-purity
structural steel melted in electric arc furnace after
hardened with austenitized at temperature 880°C and
tempered at 200°C as relationship o taking into
account the distance between the impurities present in
the tested steel d and the arithmetic mean distance
between non-metallic inclusion A is presented at Fig.
3. Its regression equation and correlation coefficient r
is presented at (0).
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Fig. 3 Rotational bending fatigue strength of hardened and
tempered steel at 400°C as a function of diameter and distance
between inclusions

Zgoony = 680.99 - o + 248.68, r=0.8433 6)

Rotary bending fatigue strength high-purity
structural steel melted in electric arc furnace after
hardened with austenitized at temperature 880°C and
tempered at 200°C as relationship o« taking into
account the distance between the impurities present in
the tested steel d and the arithmetic mean distance
between non-metallic inclusion A is presented at Fig.
4. Its regression equation and correlation coefficient ¢
is presented at (7).
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Fig. 4 Rotational bending fatigue strength of hardened and
tempered steel at 500°C as a function of diameter and distance
between inclusions

Zoos00) = 777.2 * oo + 212.23, t=0.7146 (7)

Rotary bending fatigue strength high-purity
structural steel melted in electric arc furnace after
hardened with austenitized at temperature 880°C and
tempered at 200°C as relationship o taking into
account the distance between the impurities present in
the tested steel d and the arithmetic mean distance
between non-metallic inclusion A is presented at Fig.
5. Its regression equation and correlation coefficient r
is presented at (8).
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Fig. 5 Rotational bending fatigne strength of hardened and
tempered steel at 600°C as a function of diameter and distance
between inclusions

Zoo(00) = 478.93 + o + 213.59, r=0.6417 (8)

The analysis of regression equations (4) - (8) and
its correlation coefficients shows that the analyzed
dependencies are well reflected by the first degree
equation. By statistically analyzing the correlation
coefficients, a strong a relationship is between bending
fatigue strength and the alpha coefficient (two
variables) was found. This relationship is stronger for
the lower tempering temperatures. After the low
tempering process at the temperature of 200°C, the
steel has the microstructure of low-tempered
martensite [31]. As the tempering temperature
increases, the microstructure of the steel, which is

martensite,  changes  into  medium-tempered
martensite as a result of the transformation. Along
with a further increase in the tempering temperature,
high-tempered plastic martensite is formed. An
increase in the tempering temperature causes an
increase in plasticity and a decrease in hardness [31]
due to the transformation of martensite.

Then the results of the research, a decrease in the
level of correlation coefficients was observed along
with an increase in the tempering temperature,
therefore when the microstructure of the steel is closer
to the diffusion one. Analyzing the regression
equations for individual tempering temperatures, an
increase in the a (3 - slope factor) coefficient was
found with a decrease in the tempering temperature.
With an increases the tempering temperature the steel,
which is a matrix of non-metallic inclusions, gains
plasticity. Thus, the relation matrix - non-metallic
inclusion changes within a certain range [50]. By
analyzing Fig. 1-Fig 5 with its regression equation (4)
- (8) and its correlation coefficients, it was found that
at lower tempering temperatures, and thus a harder
matrix of pollutions, the accuracy of the analysis is
higher. It follows that, apart from the lower
complexity of the analysis of the results, the impact of
pollutants on benging fatigue strength is greater. This
is probably the reason for a thorough and quite simple
analysis of the impact of impurities in the hard matrix
on the benging fatigue strength of steel. This view
confirms the great interest of researchers in steels of
high hardness [18,29,34].

4 Conclusions

* The conducted tests in industrial conditions
allow to bring the results and their analysis
closer to the actual parameters prevailing in
the industry.

* The o index relates the mean size of
impurities with the mean distance between
impurities and the relative volume of
impurities, thus describing the influence of
the morphology of pollution on the benging
fatigue of steel.

* The strength of the influence of pollution
depends on the hardness of the steel as a
matrix of inclusions, and therefore the

tempering temperature of the steel.
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