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A modern user requires low operating costs, but also reliability from machines and technical devices. 
Reliability during the service life depends on the quality of construction solutions, but also largely on the 
quality, properties and adaptation to the working conditions used in the construction of construction 
materials. During the operation of technical objects, their a highly predictable wear occurs. The problem 
is the phenomena of premature wear and damage of elements. The causes of failure of technical facilities 
are usually complex and depend on many factors. They can include the human factor and the one related 
to the quality, selection, production and technological processes of the materials used in the construction 
of the facility. In real technical facilities, many premature failures are caused by material fatigue, which 
is related to the imperfection of the material and the morphology of non-metallic inclusions. The paper 
presents the change in fatigue strength for rotational bending of high-purity structural steel. In order to 
diversify the matrix of inclusions, the steel was hardened and tempered at temperatures from 200°C to 
600°C. The influence of impurity diameter and arithmetic average impurities space on the fatigue 
strength of industrially produced steel was investigated..  

Keywords: Steel, Fatigue Strength, Impurities, Arc Furnace 

 Introduction 

The dynamic progress in manufacturing 
technology and available research methods recorded 
in recent years, along with the constantly growing 
demand for machines and technical devices 
characterized by high reliability, constitute the premise 
for conducting research on fatigue strength of 
construction materials [1-6]. Industrially produced 
steels contain in their chemical composition, in 
addition to alloying additives (which include Si, Mn, 
Cr, Mo, V, W, B and others), blends and impurities 
(such as S, P, O i inne) and other impurities introduced 
into the alloy as a result of Technological process (e.g. 
crumbs of furnace lining, chipping and ladle scale, etc.) 
as well as contaminants introduced during the re-
remelting of metal alloys that were already in 
operation (e.g. hard ceramic particles embedded in 
metal alloys) [7-8]. The technological process aims to 
remove impurities by filtration, refining, etc. [9-11]. 
However, it is not easy. The economics of steel 
production, and therefore the desire to reduce its 
production costs, also limits these possibilities. Each 
cleaning operation of the metal alloy increases the 
production cost and, consequently, the price [12]. In 
the metallurgical process, physicochemical reactions 
take place, as a result of which non-metallic phases, 
called non-metallic inclusions, are formed in the liquid 
alloy. The number of non-metallic inclusions depends 
on the amount of impurities and impurities in the 

alloy. The qualitative structure of these inclusions as 
well as their shape and dimensions result not only 
from the content of impurities [13-16], but also from 
the production process [17-21]. 

Many factors affect the fatigue strength of metal 
alloys. In the literature, the most common information 
is the size and type of stress, load amplitude, 
interaction frequency, material microstructure, surface 
condition (e.g. roughness, corrosion), microstructural 
defects, working conditions and environment and the 
shape of the element [22-29]. 

Currently, the literature provides many hypotheses 
regarding the influence of individual factors on the 
fatigue strength. Safety coefficients were developed to 
compensate for random events and imperfections in 
knowledge and calculation methods. However, the 
influence of the material quality on the fatigue strength 
cannot be ignored. There is contamination in real 
material produced under industrial conditions. The 
content and morphology of these impurities is also an 
important factor determining the fatigue strength and 
thus durability of the material. Non-metallic inclusions 
usually reduce the fatigue properties of metal alloys 
[30-35]. However, there are reports of their beneficial 
effects [36-37]. 

Unfortunately, non-metallic contaminants mainly 
play a negative role. Despite the great interest of 
researchers in determining the relationship between 
inclusions and strength, in particular fatigue strength, 
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it was not possible to clearly define this relationship. 
The presented knowledge is based on hypotheses [38-
45]. It was confirmed that the fatigue strength of metal 
alloys depends not only on its microstructure, but also 
on the quantity and quality of non-metallic inclusions. 
The main role is played by the size and distribution of 
impurities in the microstructure of the material [33, 46, 
47]. Despite the existence of advanced computer 
techniques [48,49] and many studies, until now it has 
not been possible to connect the fatigue strength with 
the morphology of inclusions occurring in high 
plasticity steel. Thanks to this, the topic presented in 
the paper is still relevant. 

The aim of the research was to simultaneously 

investigate the influence of the average distance 
between inclusions and the relative volume of 
inclusions on the fatigue strength of high-purity 
structural steel with different microstructures. 

 Materials and methods 

The test material was High-Purity Structural Steel 
Melted in an Electric Furnace with the addition of 
manganese, nickel, molybdenum and boron. It also 
contained phosphorus and sulfur impurity. The 
average content of individual alloying elements and 
impurities from 7 heats carried out in the electric arc 
furnace is shown in Table 1. 

Tab. 1 Real chemical composition of the tested steel 
C Mn Si P S Cr Ni Mo Cu B 

0.26 1.18 0.24 0.02 0.01 0.52 0.50 0.25 0.15 0.03 

It was decided to realize different hardness and 
plasticity of steel by applying different tempering 
temperatures. The steel intended for testing was 
smelted in a 140-ton electric arc furnace with 
desulfurization. The melts were carried out in 
industrial conditions. The molten steel was poured 
into the ladle. Then, billets with a section of 100 mm 
x 100 mm were rolled from it. Samples were taken 
from these billets for further research. The samples 
were quenched and tempered. In the hardening 
process, the steel was austenitized at the temperature 
of 880°C for 30 minutes. From this temperature, the 
samples were cooled in water. Then the samples were 
divided into batches and tempered at the following 
temperatures: 200, 300, 400, 500 and 6000C for 120 
minutes with air cooling. The fatigue strength test was 
carried out in the rotary bending process. The tests 
were carried out under load. The rotational speed of 
the bending machine was set at 600 revolutions per 
minute. The loading of the samples during bending 
was selected experimentally, taking into account the 
hardness of the steel. This load for appropriate 
tempering temperatures was: for 2000C - 650 MPa, for 
300 to 5000C - 600 MPa and for 6000C - 540 MPa 
[15,16,31,32]. 

The chemical composition was determined on 
each of the heats using a LECO quantometer and 
traditional chemical analysis methods. The relative 
volume of non-metallic inclusions with a minimum 
diameter of 2 µm was determined with a Quantimet 
video inspection microscope under 400x 
magnification. The relative total volume of non-
metallic inclusions was determined by the chemical 
extraction method. The relative volume of inclusions 
in the range of up to 2 µm was calculated analytically 
by subtracting from the total volume of inclusions the 
volume obtained by image analysis with a diameter 
greater than 2 µm. The number of particles in the 

range 2 µm and smaller was the difference between 
the number of all inclusions determined by chemical 
extraction and the number of inclusions measured by 
the video method.  

Calculations of the relative volume of non-metallic 
inclusions were carried out assuming that the quotient 
of particle surfaces and the observation area is equal 
to the quotient of the volume of particles in the 
assumed volume and the assumed volume. 

The quality of non-metallic inclusions on the 
cross-section of the samples was determined using the 
XRD method. As a result of the research, it was found 
that Al2O3 was an average of 41.4% of impurities. 
Next, in terms of quantity, SiO2 was found - 14.7% on 
average. The other types of inclusions in the form (in 
order of decreasing share) were: Cr2O3, CaO, FeO, 
MgO, MnO and constituted from 10% to 7% of the 
volume of all impurities. The qualitative structure of 
the particles present in the tested steel is presented in 
[13]. The distances between inclusions occurring in 
the tested α steel were calculated from the dependence 
(1). arithmetic average non-metallic inclusions space λ 
calculated in accordance to (2):  

α � d�
λ (1) 

Where: 

̅ …The average diameter of non-metallic 

inclusion [µm],  
λ…rithmetic mean distance between non-metallic 

inclusion [µm]. 

λ � 2
3d� �

1
V� � 1� (2) 

Where: 
V0…The relative volume of impurities [%]. 
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The correlation analysis and the significance 
assessment of the r coefficients were performed using 
the t-Student probability distribution for the 
significance level α = 0.05 and the number of degrees 
of freedom f = n-1. The critical value of the Student's 
distribution for p = (n-1) and the 5% significance level 
for 7 heats is tα (0.05) = 2.447. 

The test results are presented in the form of a 
regression equation with the general form (3). 

zgo(tempered)= a · α + b (3) 

Where: 
α…Size and distances between the impurities [-], 
a, b…Coefficients regresion equation [-]. 

 Results and discussion 

The total amount of impurities in the tested steels 
determined by the arithmetic mean of 7 heats was 
0.188%, and its standard deviation was 0.0385%. 
Rotary bending fatigue strength high-purity structural 
steel melted in electric arc furnace after hardened with 
austenitized at temperature 8800C and tempered at 
200°C as a relationship α taking into account the 
distance between the impurities present in the tested 
steel 
̅  and the arithmetic mean distance between 
non-metallic inclusion λ is presented at Fig. 1. Its 
regression equation and correlation coefficient r is 
presented at (4). 

 

Fig. 1 Rotational bending fatigue strength of hardened and 
tempered steel at 200°C as a function of diameter and distance 

between inclusions 

zgo(200)= 2311.8 · α + 153.69,  r=0.9566 (4) 

Rotary bending fatigue strength high-purity 
structural steel melted in electric arc furnace after 
hardened with austenitized at temperature 8800C and 
tempered at 200°C as a relationship α taking into 
account the distance between the impurities present in 
the tested steel d ̅ and the arithmetic mean distance 
between non-metallic inclusion λ is presented at Fig. 
2. Its regression equation and correlation coefficient r 
is presented at (5). 

 

Fig. 2 Rotational bending fatigue strength of hardened and 
tempered steel at 300°C as a function of diameter and distance 

between inclusions 

zgo(300) = 1150.8 · α + 226.95,  r=0.8812 (5) 

Rotary bending fatigue strength high-purity 
structural steel melted in electric arc furnace after 
hardened with austenitized at temperature 8800C and 
tempered at 200°C as relationship α taking into 
account the distance between the impurities present in 
the tested steel d ̅ and the arithmetic mean distance 
between non-metallic inclusion λ is presented at Fig. 
3. Its regression equation and correlation coefficient r 
is presented at (6). 

 

Fig. 3 Rotational bending fatigue strength of hardened and 
tempered steel at 400°C as a function of diameter and distance 

between inclusions 

zgo(400) = 680.99 · α + 248.68,  r=0.8433 (6) 

Rotary bending fatigue strength high-purity 
structural steel melted in electric arc furnace after 
hardened with austenitized at temperature 8800C and 
tempered at 200°C as relationship α taking into 
account the distance between the impurities present in 
the tested steel d ̅ and the arithmetic mean distance 
between non-metallic inclusion λ is presented at Fig. 
4. Its regression equation and correlation coefficient r 
is presented at (7). 
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Fig. 4 Rotational bending fatigue strength of hardened and 
tempered steel at 500°C as a function of diameter and distance 

between inclusions 

zgo(500) = 777.2 · α + 212.23,  r=0.7146 (7) 

Rotary bending fatigue strength high-purity 
structural steel melted in electric arc furnace after 
hardened with austenitized at temperature 8800C and 
tempered at 200°C as relationship α taking into 
account the distance between the impurities present in 
the tested steel d ̅ and the arithmetic mean distance 
between non-metallic inclusion λ is presented at Fig. 
5. Its regression equation and correlation coefficient r 
is presented at (8). 

 

Fig. 5 Rotational bending fatigue strength of hardened and 
tempered steel at 600°C as a function of diameter and distance 

between inclusions 

zgo(600) = 478.93 · α + 213.59,  r=0.6417 (8) 

The analysis of regression equations (4) - (8) and 
its correlation coefficients shows that the analyzed 
dependencies are well reflected by the first degree 
equation. By statistically analyzing the correlation 
coefficients, a strong a relationship is between bending 
fatigue strength and the alpha coefficient (two 
variables) was found. This relationship is stronger for 
the lower tempering temperatures. After the low 
tempering process at the temperature of 2000C, the 
steel has the microstructure of low-tempered 
martensite [31]. As the tempering temperature 
increases, the microstructure of the steel, which is 

martensite, changes into medium-tempered 
martensite as a result of the transformation. Along 
with a further increase in the tempering temperature, 
high-tempered plastic martensite is formed. An 
increase in the tempering temperature causes an 
increase in plasticity and a decrease in hardness [31] 
due to the transformation of martensite. 

Then the results of the research, a decrease in the 
level of correlation coefficients was observed along 
with an increase in the tempering temperature, 
therefore when the microstructure of the steel is closer 
to the diffusion one. Analyzing the regression 
equations for individual tempering temperatures, an 
increase in the α (3 - slope factor) coefficient was 
found with a decrease in the tempering temperature. 
With an increases the tempering temperature the steel, 
which is a matrix of non-metallic inclusions, gains 
plasticity. Thus, the relation matrix - non-metallic 
inclusion changes within a certain range [50]. By 
analyzing Fig. 1-Fig 5 with its regression equation (4) 
- (8) and its correlation coefficients, it was found that 
at lower tempering temperatures, and thus a harder 
matrix of pollutions, the accuracy of the analysis is 
higher. It follows that, apart from the lower 
complexity of the analysis of the results, the impact of 
pollutants on benging fatigue strength is greater. This 
is probably the reason for a thorough and quite simple 
analysis of the impact of impurities in the hard matrix 
on the benging fatigue strength of steel. This view 
confirms the great interest of researchers in steels of 
high hardness [18,29,34]. 

 Conclusions 

• The conducted tests in industrial conditions 
allow to bring the results and their analysis 
closer to the actual parameters prevailing in 
the industry. 

• The α index relates the mean size of 
impurities with the mean distance between 
impurities and the relative volume of 
impurities, thus describing the influence of 
the morphology of pollution on the benging 
fatigue of steel. 

• The strength of the influence of pollution 
depends on the hardness of the steel as a 
matrix of inclusions, and therefore the 
tempering temperature of the steel. 
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