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Surface roughness is an important index to evaluate the quality of a machined surface. In order to accu-
rately predict the surface roughness for slow tool servo (STS) turning, taking toric surface as an example,
response surface methodology (RSM) was used to perform the process test. The second-order response 
surface prediction model was established and the variance analysis and reliability test were carried out.
The results showed that the average prediction error was 7.6%. In order to obtain the best process para-
meters, standard particle swarm optimization (PSO) was used. The results showed that the global opti-
mization ability of standard PSO was poor. In order to solve the problem, compression factor was intro-
duced and particle swarm optimization with compression factor (WCF-PSO) was constructed, which 
enhanced the convergence of PSO effectively. WCF-PSO was used to optimize the process parameters

and the results obtained were Rt=0.87mm, af =0.01mm/r, ap=0.05mm, Δθ=8.70°, with a corresponding 

surface roughness of Ra=0.0486μm. The results of the verification test showed that the actual value was

Ra=0.0520μm, and the error was only 7.0%, indicating that WCF-PSO had a better optimization effect.

Keywords: Slow tool servo, Response surface methodology, Prediction model, Particle swarm optimization, Op-
timization of process parameters 

Introduction

Compared with ordinary optical surfaces, complex 
optical surfaces have unique optical properties, such 
as simplifying the optical system and optimizing the 
imaging quality, so they are widely used in many fields 
[1-6]. For example, toric surface is a typical aspheric
complex optical surface, which has good optical pro-
perties and can form different diopters in two perpen-
dicular directions [7]. Based on this feature, toric sur-
face lenses are widely used to correct astigmatism. 
However, the traditional turning process is difficult to 
meet the quality requirements of complex optical sur-
faces (such as toric surfaces), which limits their appli-
cation. As a new ultra-precision machining method, 
STS turning technology has good machining quality. 
In recent years, it has been applied to the turning of

various complex optical surfaces [8-10].
Surface roughness is one of the important indexes 

used to evaluate the surface machining quality. It is of 
great practical value to accurately predict and control 
the surface roughness for STS turning [11]. Lin et al. 
[12] carried out simulation experiments using Matlab 
software and established the surface topography pre-
diction model of ultra precision machining microlens 
array. However, due to various errors in actual machi-
ning, the simulation experiments could not reflect the 
real results well. Wang et al. [13] established the sur-
face roughness prediction model of LS-SVM based on 
radial basis function by using orthogonal regression 

analysis and least squares support vector machine, but 
did not get the best process parameters. Shi et al. [14]
established the surface roughness prediction model by 
using orthogonal regression analysis method and RSM
respectively. The results showed that the prediction 
accuracy of the second-order response surface met-
hod was better than that of the orthogonal regression 
analysis method, but the process parameters were also 
not optimized. The optimal process parameters can 
improve the processing quality or efficiency, which 
has practical significance to guide production. There-
fore, it is necessary to optimize the process parameters 
[15]. Lin et al. [16] optimized the mathematical model 
of surface roughness using satisfaction function met-
hod, but the parameter estimation of this method is
uncertain [17], so it is not easy to obtain the optimal 
process parameters. Wei et al. [18] optimized the pro-
cess parameters of piezoelectric vibration energy re-
covery device using standard PSO, and obtained the 
best process parameters under different modes, but 
the standard PSO is easy to fall into local optimum 
position.

According to the research and analysis above, the 
turning test was designed based on RSM in this paper. 
Four main cutting parameters of tool tip radius (Rt), 
feed rate (af), cutting depth (ap) and discrete angle (Δθ) 
were taken as independent variables, and surface rou-
ghness (Ra) was taken as dependent variable. The se-
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cond-order response surface prediction model was es-
tablished, and the variance analysis and reliability test 
of the model were carried out. In order to obtain the 
best process parameters, standard PSO was improved.
Compression factor was introduced into standard 
PSO. Particle swarm optimization with compression 
factor (WCF-PSO) was used to optimize the process 
parameters, and the best combination of process pa-
rameters was obtained. The results of the verification 
test showed that WCF-PSO proposed in this paper 
had a better optimization effect.

STS machining toric surface

2.1 Principle and experimental device

STS turning is a new ultra-precision turning tech-
nology, which is mainly used in the precision machin-
ing of complex optical surfaces. Figure 1 shows the
STS turning platform with high precision developed 
by our own laboratory. Its layout is ' T ' shaped, and it 
mainly consists of two linear motion axes (X-axis and 
Z-axis) and a rotary motion axis (C-axis). The X-axis 
and Z-axis are driven by two linear motors respec-
tively (The type of the linear motors is SWI225LM,
and the positioning accuracy is ±1μm), and the C-axis 
is driven by a precision pneumatic motorized spindle
(The model of the spindle is ZCS-150QD01, which 
has a highest rotational speed of 1000 rpm, and its ra-
dial jump is less than 0.1μm). In addition, the tool 
holder is installed on the Z-axis with good dynamic 
performance, and the PCD tool is installed on the tool 
holder. Among them, the C-axis drives the workpiece 
to rotate, the X-axis drives the tool to feed along the 
X direction, and the Z-axis drives the tool to recipro-
cate along the Z direction. The three-axis linkage 
drives the tool to perform spatial spiral cutting motion 
relative to the end face of the workpiece, realizing the 
processing of various complex surfaces [19].

Fig. 1 STS turning platform with high precision

2.2 Toric Surface and Machining Method

Toric surface is a typical aspheric complex optical 
surface, that has good optical properties and its math-
ematical equation can be expressed by formula (1).

Toric surface is a surface obtained by rotating a base 
circle with radius a around the axis in the plane of the 
base circle but not through the center of the base circle 
with radius RH, as shown in Figure 2. Where RH is the 
radius of orthogonal arc, a is the radius of base arc, 

and RH a [20].

2 2 2 2( )H Hz R a R a y x= + - + - - (1) 

Fig. 2 3D diagram of toric surface

STS turning technology was used to process the 
toric surface lenses, and the typical spiral path was se-
lected as the tool path [21]. Equal angle discretization 
method was adopted, and the equation of cutting con-
tact points (CCPs) trajectory can be shown in formula
(2) [22]:
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Where, ( , , )x y z is the coordinate of the CCP in 

rectangular coordinate system, ( , )z f x y= is the 

equation of complex surface,
f

a is the feed rate, 
i
q is 

the positive angle between the connection line from 
the CCP to the center of the workpiece and the X-axis

in the XOY plane, and qD is the discrete angle [22].
The trajectory of cutting location points (CLPs) can 
be obtained after the CCPs are compensated by tool 
compensation algorithm (Z-direction compensation)

[23], as shown in Figure 3. Where, =0.5tR mm ,

=6qD ° , and =1fa mm . The material of workpiece is 

polymethyl methacrylate (PMMA), and the diameter is

=0.5D mm . When machining, the tool cut in from the 
outer edge of the workpiece.
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Fig. 3 Tool path of turning toric surface

Process test and model establishment

3.1 Test scheme and results

The central composite design (CCD) method in
classical RSM was used to design the experiment. The 
response was surface roughness ( )Ra , and the four pa-

rameters that have a relatively large influence on the 
surface quality of STS turning were selected as factors. 

They were tool tip radius ( )tR , feed rate ( )fa , cutting 

depth ( )pa and discrete angle ( )qD respectively. 5 levels

( , 1, 0,1, )a a- - were set for each factor, where a was

the value of rotation factor, and it can be determined 

by the formula 4
2

k
a = ( k is the number of factors, and 

there were 4 factors in this test, so 4k = ) [24]. The ro-
tation design of RSM had the property of constant 
prediction variance at the equidistant point of the de-
sign center by selecting the reasonable value of the ro-
tation factor a , which improved the prediction ac-
curacy [24]. Table 1 is the factor level coding table for 
this test design.

After the machining of the workpieces of toric sur-
face were completed, the JB-4C surface measurement 

system was used for measurement. Combined with fi-
gure 4, the measurement method of surface roughness 
was described as follows: 1) The workpiece was evenly 
divided into 8 parts along the circumferential direction 
and marked on the edge of the workpiece.  2) The 
probe of the surface measurement system measured
the surface along these 8 lines.  3) The maximum and 
minimum values of the 8 results were removed, and 
the average of the remaining 6 results was calculated 
to obtain the final value of surface roughness.  Table 
2 shows the 26 groups of experimental data obtained 
by the method above.

Tab. 1 Factor level coding table

Factors Coding
Levels

-2 1 0 1 2

( )
t

R mm X1 0.25 0.50 0.75 1.00 1.25

( / )
f

a mm r X2 0.01 0.02 0.03 0.04 0.05

( )
p

a mm X3 0.01 0.02 0.03 0.04 0.05

( )qD ° X4 2 4 6 8 10

Fig. 4 Measurement method of surface roughness

Tab. 2 Experimental data

Num-
ber

Rt

(mm)

af

(mm/r)

ap

(mm)
Δθ

(°)

Ra
(μm)

Num-
ber

Rt

(mm)

af

(mm/r)

ap

(mm)
Δθ

(°)

Ra
(μm)

1 0.50 0.04 0.04 8 0.1222 14 1.00 0.02 0.04 8 0.0680
2 0.75 0.05 0.03 6 0.1053 15 0.75 0.01 0.03 6 0.0540
3 1.00 0.04 0.02 8 0.0950 16 0.50 0.02 0.04 8 0.0952
4 0.75 0.03 0.01 6 0.0727 17 0.75 0.03 0.05 6 0.0710
5 0.75 0.03 0.03 6 0.0722 18 1.25 0.03 0.03 6 0.1180
6 0.50 0.02 0.02 8 0.0872 19 0.50 0.04 0.02 8 0.1137
7 1.00 0.02 0.02 8 0.0743 20 0.50 0.04 0.04 4 0.1102
8 1.00 0.02 0.02 4 0.0725 21 1.00 0.04 0.04 4 0.0982
9 0.75 0.03 0.03 2 0.0805 22 0.75 0.03 0.03 10 0.0743
10 0.25 0.03 0.03 6 0.1612 23 0.50 0.02 0.04 4 0.1038
11 0.50 0.04 0.02 4 0.1067 24 1.00 0.04 0.04 8 0.1058
12 0.75 0.03 0.03 6 0.0685 25 1.00 0.04 0.02 4 0.0900
13 0.50 0.02 0.02 4 0.0920 26 1.00 0.02 0.04 4 0.0683

Workpiece of the toric surface

1
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3.2 Establishment of prediction model

RSM is a kind of data processing method. The spe-

cific fitting method is to describe n coordinates ( , )i ix y

of sampling points in the coordinate system according 
to the observation data, 1, 2,...,i n= , and then con-

struct the responsding surface function [25]:

0 1 1 2 2 2( ) ( ) ( ) ( )m mf x c c x c x c xf f f= + + + +2 2 2m m2 2 22 2 22 2 2m m2 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 22 2 2
(3)

Where, 0c is a constant, 1 2, , ..., mc c c are undeter-

mined coefficients, and ( )k xf is a kind of simple 

function, ( 1, 2,..., )k m= .

In order to make the constructed function ( )k xf
better reflect the overall shape of the responsding sur-

face function ( )f x , the function ( )k xf is required to 

minimize the sum of squares ( )R of deviations at each 

point [26]:

2

1

min [ ( ) ]
n

i i

i

  R x yf
=

= -å (4)

In this paper, the least square method was used to 
fit the response surface. RSM was used to approxi-
mate the relationship between design objective and va-
riables, and the multiple regression equation was used 
to fit the functional relationship between influencing 
factors and response. The quadratic complete polyno-

mial was selected as the constructor function ( )k xf to 

form a typical second-order response surface model 
[27]:
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Where, k is the number of process parameters, 

4k = in this paper. 0c is the constant, ic is the coeffi-

cient of one degree term, 4ic + is the coefficient of the

quadratic term, ijc is the coefficient of the interactive 

term, ix and jy are independent variables, and e is the 

error of experimental data.
Based on the above model, quadratic regression 

fitting was performed according to the experimental 
data in Table 2, and the second-order response regres-
sion equation was obtained by solving:

2 2 2 2

0.314-0.476 -2.207 -0.255 -0.011 +0.783 -0.583 +13.563 +

         0.001 +0.136 +0.005 +0.282 +26.281 +6.781 +0.0005

t f p t f t p f p

t f p t f p

Ra R a a R a R a a a

R a a R a a

q

q q q q

= D

D D D D

0 583 +13.563 +t f t p f p0.583 +13.56313.563-0 583 +13 563+13 563t f t0.583 +13.563+13.5633 +13.563

t f p t f p

2 2 2

t f p t f pt f p0. 36 0.005 0. 80.005 0. 80. 36 0.005q q q 2 2 20.136 0.005 0.282 20.005 0.2820.005 0.2820.136 0.005Dq q qq 2 2 20 136 0 005 0 2820 136 0 0050 005 2 2 2+0 136 +0 005 +0 282 +22 2 22 2 2+0.136 +0.005 +0.282 +2+0.005 +0.2826 +0.005 +0.282+0.136 +0.005+0.005   (6)

3.3 Model analysis

The regression equation was analyzed using vari-
ance analysis, and the data on variance analysis was 
obtained, as shown in Table 3. Where, the P-value re-
presents reliability, and P=0.05 is the boundary level 

of acceptable error (generally P 0.05 indicates the 
good significance ) [27]. It can be seen from Table 3 
that the P-value of the overall model was less than 

0.0001 (P 0.0001), indicating that the regression mo-
del reached an extremely significant level and the error 
of the whole model was small in the experimental er-

ror range. 2
R of the model was 0.9809, and adjusted 

2
R of the model was 0.9567. The difference between 

the two was very small, and 2
R was close to 1, indica-

ting that the model obtained in this experiment had
high credibility. The P-value of the lack of fit term of 

the model was 0.3881 (P 0.05), so the lack of fit term 
was not significant, indicating that the equation was
fully fitted and could better describe the real relation-
ship between various factors and response [26-27].

It can be seen from the results of variance analysis 

in Table 3 that the tool tip radius ( )
t

R in the one de-

gree terms of the second-order response regression 

equation had an extremely significant effect on surface 

roughness (P 0.01), while the feed rate ( )
f

a and 

discrete angle ( )qD had significant effects on surface 

roughness (P 0.05). The order of factors affecting 

surface roughness was t f pR a aqD .
fa qDqD in the 

interactive terms had a significant effect on surface 

roughness, 
2

tR in the quadratic terms had an extre-

mely significant effect on surface roughness, 
2

fa had

a significant effect, while the rest of the effects were
not significant.  

3.4 Reliability test of the model

It was evident that the significance of the overall 
model was good after the above significance analysis, 
so further reliability test of the model was needed. Fi-
gure 5(a) shows the relationship between the actural
value and the predicted value. It can be seen from the 
figure that the data fitted by the model were basically 
around the best simulation curve (i.e., the difference 
between the predicted value and the actural value was
small), indicating that the prediction effect of the mo-
del was good. In addition, the residual analysis was
carried out. Taking the residual as the abscissa and the 
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normal probability as the ordinate, the distribution di-
agram of residual and normal probability was drawn, 
as shown in Figure 5(b).  It can be seen from the figure 
that all residual distribution points were basically dis-

tributed along a straight line, showing a linear relation-
ship, which met the requirements of normal hypothe-
sis. Most of the test data was distributed in the interval 
(-2, 2) with a confidence level of 95 %, indicating that 
the reliability of the test data was good [27].

Tab. 3 Results of variance analysis

Source Sum of Squares Freedom Mean Square F-Value P-Value

Model 0.013 14 9.431×10-4 40.45 < 0.0001**

t
R 3.735×10-3 1 3.735×10-3 160.20 < 0.0001**

f
a 1.284×10-4 1 1.284×10-4 5.51 0.0387*

p
a 1.715×10-6 1 1.715×10-6 0.074 0.7913

qD 1.295×10-4 1 1.295×10-4 5.55 0.0380*

t f
R a

t f
R a

t ft f 6.123×10-5 1 6.123×10-5 2.63 0.1334

t p
R a

t p
R a

t pt p 3.393×10-5 1 3.393×10-5 1.46 0.2530

t
R qDqD 4.516×10-6 1 4.516×10-6 0.19 0.6684

f p
a a

f p
a a

f pf p 2.943×10-5 1 2.943×10-5 1.26 0.2851

f
a qDqD 1.183×10-4 1 1.183×10-4 5.07 0.0457*

p
a qDqD 1.806×10-7 1 1.806×10-7 7.747×10-3 0.9314

2

t
R 5.416×10-3 1 5.416×10-3 232.30 < 0.0001**

2

f
a 1.206×10-4 1 1.206×10-4 5.17 0.0440*

2

p
a 8.027×10-6 1 8.027×10-6 0.34 0.5692

2qD 7.448×10-5 1 7.448×10-5 3.19 0.1015

Lack of Fit 2.496×10-4 10 2.496×10-5 3.65 0.3881
Residual 2.565×10-4 11 2.332×10-5 - -

Pure Error 6.845×10-6 1 6.845×10-6 - -
Total 0.013 25 - - -

Remarks: * represents significant, ** represents extremely significant. 2
=0.9809R , adjusted 2

=0.9567R .

Fig. 5 Reliability test of the model, (a) Relationship between the actural value and the predicted value, (b) Distribution diagram of 
residual and normal probability

In order to check the actual prediction effect of the 
above regression model, three groups of process para-
meters were randomly selected for processing and the 
surface roughness was measured. Comparing the pre-
dicted value and the actual value of the surface rou-

ghness, the prediction error of the model was obta-
ined, and the results are shown in Table 4. It can be 
seen that under the three groups of process parame-
ters, the maximum prediction error was 8.3 %, and the 
average prediction error was 7.6 %. The results 



October 2021, Vol. 21, No. 5 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

indexed on: http://www.scopus.com 621

showed that the regression model can be used to pre-
dict the surface roughness of toric surface accurately, 

and the model can be used as the objective function 
to optimize the process parameters.

Tab. 4 Comparison between predicted results and experimental results

Number
t

R (mm) f
a (mm/r)

p
a (mm) qD (°)

Ra (μm)
Prediction 

error

Average 
prediction 

error
Predicted 

value
Actual 
value

1 0.25 0.03 0.03 4 0.1641 0.1777 8.3%
7.6%2 0.75 0.01 0.04 8 0.0538 0.0578 7.4%

3 1.00 0.03 0.03 4 0.0790 0.0847 7.2%

Process parameters optimization

The best process parameters can improve the pro-
cessing quality or efficiency, which has practical signi-
ficance for guiding production, so it is necessary to 
optimize the process parameters. PSO is a new intelli-
gent optimization algorithm, which has the advantages 
of high precision, fast convergence speed, and easy 
programming. At present, it is widely used in natural 
and engineering fields such as function optimization, 
neural network optimization training, and combinato-
rial optimization [28-30]. Therefore, it can be applied 
to the process parameters optimization of surface rou-
ghness.

Optimization with standard PSO

Based on swarm intelligence theory, PSO is usually 
used to solve the problem of optimization.  In this al-
gorithm, the solution of each optimization problem 
can be regarded as a particle in the search space, and 
all particles constitute a particle swarm. Each particle 

has attributes such as position, velocity, and fitness.
The position represents a point in the solution space, 
and velocity represents the direction and distance of 
particle movement.  The fitness value is calculated by 
the fitness function, which is used to evaluate the po-
sition of particles. The initial position, velocity and fit-
ness of each particle are set randomly. With the itera-
tive process, the velocity and position of each particle 
are constantly updated by following the individual ex-

tremum
k

ip and group extremum
k

g . Individual ex-

tremum 1 2=( , , , )
k k k k

i i i iNp p p p, )
k k

, ), )i iN, ), ), ), )i ii i, ), ) refers to the optimal 

position of particle i from the initial to No. k iteration.

Group extremum 1 2=( , , , )
k k k k

Ng g g g, )
k k

, ), )N, ), )g g, ), ) refers to the 

optimal position of the whole group from the initial to 
No. k iteration. N is the dimension of the particles, 
namely the number of process parameters that need 
to be optimized, so N=4.  The updating formula of 
velocity and position of the particles is as follows [31]: 

1

1 1 2 2

1 1

( ) ( )k k k k k k

in in in in n in

k k k

in in in

v v c r p x c r g x

x x v

w+

+ +

ì = + - + -ï
í

= +ïî (7)

Where, 
k

inv and
k

inx are the velocity and position 

of the No. i (1 )i M£ £ particle in the No. n

(1 )n N£ £ dimension space in the No. k (1 )k K£ £

iteration, respectively. In order to prevent the blind 
search of the particles, the position and speed of the 
particles are usually limited within a certain range:

min

max

max max min

min

[0.25 0.01 0.01 2]

[1.25 0.05 0.05 10]

0.2( )

0

x

x

v x x

v

=ì
ï =ï
í

= -ï
ï =î

(8)

M and K represent the set population size and the 
maximum number of iterations, respectively, taking

24M = and 250K = .
1
r and

2
r are random numbers

distributed in the interval (-1, 1) generated by rand
function,

1
c and

2
c are learning factors, andw is iner-

tia weight. w determines the extent to which the par-
ticles inherit the previous flight speed. Reasonable se-
lection of w can achieve the balance between global 

search and local search. Most studies show that the al-
gorithm has good global search ability and can quickly 
locate the region close to the global optimal solution 

by setting a large value ofw at the beginning of the 

iteration. By reducing the value ofw at the later stage 
of iteration, the algorithm has good local search ability, 
so as to quickly obtain the accurate global optimal so-
lution [30-31]. Therefore, linear decreasing weight me-

thod was used to set w [32]:

2( ) ( )( )start start end

k
k

K
w w w w= - - (9)

Where, startw is the initial inertia weight

( 0.9)startw = , endw is the ending inertia weight

( =0.4)endw , k is the current iteration number, and K

is the maximum iteration number.  In order to 
describe the optimization process of PSO better, the 
flow chart of PSO was established, as shown in Figure 
6.
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Although the standard PSO has fast convergence 
speed, it is easy to fall into the local optimal position. 

The unreasonable selection of learning factors 1 2( , )c c

is an important reason for it to fall into the local opti-
mal position [33]. According to Formula (7), 

1

2 2 ( )
k k k k

in in n inv v c r g xw+ = + - , when 1 =0c . It shows 

that the particles search the goal through the optimal 
global information at this time, but in the case of lack 
of individual cognition, the particles cannot find the 
optimal solution in the local area.

1

1 1( )
k k k k

in in in inv v c r p xw+ = + - , when 2 =0c . It shows 

that the particles have the ability of local optimization, 
but only when the particle swarm can search the global 
optimal region, local search can find the optimal solu-
tion, otherwise it is easy to fall into local optimum. In 
addition, when

1
c and

2
c are too large, the particles

will converge to the local optimum prematurely [33].

Fig. 6 Flow chart of PSO

Equation (6) was used as the fitness function
(test_func) of standard PSO (Common PSO), and the 
corresponding program of standard PSO was written 

using Matlab. When 1 =0c and 2 =0c , 250 iterations were

performed, and the result was shown in Figure 7(a).  

When
1

c and
2

c were larger, 1 =10c and 2 =10c were ta-

ken, the same method was adopted and the result was
shown in Figure 7(b). It can be seen from Figure 7 that 
the optimal individual fitness value obtained by stan-

dard PSO was 0.0555 when 1 =0c and 2 =0c , and the 

corresponding position of the particle was (0.90, 0.01, 

0.01, 9.46). That is, when =0.90tR mm , =0.01 /fa mm r

, =0.01pa mm , and =9.46qD , the surface roughness 

of the machined toric surface was the lowest at 0.0555 
μm. When

1
c and

2
c were larger, the optimal indivi-

dual fitness value was 0.0503, and the corresponding 
position of the particle was (0.83, 0.01, 0.03, 8.54).

That is, when =0.83tR mm , =0.01 /fa mm r , 

=0.03pa mm , and =8.54qD , the surface roughness 

of the machined toric surface was the lowest at 0.0503
μm. Through comparison and analysis, it can be seen 
that the optimization results obtained by standard 
PSO were quite different when the values of learning 
factors selected were different. In addition, from the 
particle dynamics model in Figure 7, it can be seen that 
the final particle swarms under different learning 
factors were both relatively dispersed, and neither of 
them reached the global optimal position. This indica-
tes that the global optimization ability of standard 
PSO was poor (i.e., poor convergence), and it would
fall into the local optimal position when

1
c and

2
c

were too small or large, which explains the reason for 
the large difference between the two optimization re-
sults. Therefore, the best combination of process pa-
rameters of the above mathematical model cannot be 
obtained by the standard PSO.

Fig. 7 Optimization results of standard PSO, (a) Optimization result ( 1 =0c , 2 =0c ), (b) Optimization result ( 1 =10c , 2 =10c )
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4.2 Optimization with WCF-PSO

The learning factors 1 2( , )c c determined the influ-

ence of the experience information between the par-
ticles on the trajectory of the particles, which reflected
the information exchange between the particle swarm.
Through the above analysis and optimization, it was

found that if the values of learning factors 1 2( , )c c were

different, the optimization results were quite different. 

In addition, when the values of learning factors 1 2( , )c c

were unreasonable, it can be known from the above 
particle dynamics model that the convergence of the 
algorithm would be poor and therefore easy to fall into 

the local optimal position.
In order to solve the above problems, the standard 

PSO was improved. By adjusting the learning factors 
reasonably to control the flying speed of particles 
effectively, the algorithm can achieve an effective ba-
lance between global optimization and local opti-
mization. The introduction of compression factor ( )j
can effectively adjust the parameters in the formula of 
particle velocity and position, so as to ensure the con-
vergence of the PSO. After introducing the compres-
sion factor ( )j , the particle swarm optimization with 

compression factor (WCF-PSO) was constructed, and 
the updating formula of velocity and position of the 
particles was changed to [34]:

1

1 1 2 2

1 2
2

( ) ( )

2
= , ( = )

| 2 4 |

k k k k k k

in in in in n inv v c r p x c r g x

C c c
C C C

j w

j

+ì é ù= + - + -ë ûï
í

+ï
- - -î

in iin i

k k kék k kk k kk k kk k kk k k

in iëin in inin iin in inin iin iin in inin in inin iin iin iin iin i

k k kk k kk k kk k kk k kk k kk k kk k kv ck k kk k kk k k

in in inin in inn in

k k kk k kk k kk k kk k kvk k kk k kk k kk k k

in iin iin iin i

(10)

Fig. 8 Optimization result under WCF-PSO

According to the study, 1 2 4.1c c+ = was taken [34], 

and compression factor ( )j was 0.73 at this time. A to-

tal of 250 iterations were carried out to obtain the op-
timization result, as shown in Figure 8. It can be seen 

from the figure that the final optimal individual fitness 
value obtained by WCF-PSO was 0.0486, and the 
corresponding position of the particle was (0.87, 0.01, 

0.05, 8.70). That is, when =0.87tR mm , =0.01 /fa mm r

, =0.05pa mm , and =8.70qD , the surface roughness 

of the machined toric surface was the lowest at
0.0486μm. In addition, by comparing Figure 7 and Fi-
gure 8, the particle dynamics model was analyzed. It 
can be seen that after 250 iterations, the final particle 
swarm was dispersed under the standard PSO, and the 
global optimal position was not found, indicating that 
the global optimization ability of the algorithm was
poor and the algorithm fell into local optimal position
easily.  After 250 iterations, the final particle swarm 
converged at a point under the improved WCF-PSO, 
indicating that the optimal position was found in the 
global range.  It showed that compared with the stan-
dard PSO, the improved WCF-PSO had better global 
search ability and better optimization effect.

Fig. 9 Workpiece of toric surface and the value of Ra of a part on it (Optimization by WCF-PSO), (a) Machined workpiece of 
toric surface, (b) The value of Ra of a part on the toric surface

(a)

C1+C2=4.1

Output : 
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Global 

best
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In order to test the accuracy of the optimization 
result uner WCF-PSO, it was necessary to verify it by 
carrying out process test. In order to facilitate the test, 
the process parameters obtained by WCF-PSO were

properly adjusted, =9qD was taken, and the other pa-
rameters remained unchanged. The machined work-
piece of toric surface is shown in Figure 9(a), and its
surface roughness was measured. The measurement 
method was the same as above. The final measure-
ment result was =0.0520Ra mm , and Figure 9(b) shows

the value of Ra of a part on the toric surface (In the 
roughness profile graph, the abscissa represents 
sampling points and ordinate represents the Z value 
of the workpiece surface). Compared with the opti-
mization result ( =0.0486 )Ra mm under WCF-PSO, the 

error was only 7.0 %, indicating that the WCF-PSO
proposed in this paper had a better optimization 
effect.

Conclusions

(1) RSM was used to design the experiment, the 
second-order response surface model was obtained
and the variance analysis and reliability test of the 
mathematical model were carried out. The analysis re-
sults showed that the P-value of the overall model was

less than 0.0001 (P 0.0001), indicating that the mo-

del reached an extremely significant level. 2
R of the 

model was 0.9809, which was close to 1, indicating 
that the model had high credibility. Most of the test 
data was distributed in the interval (-2, 2) with a con-
fidence level of 95 %, indicating that the reliability of 
the test data was good. The results of the verification 
test showed that the average prediction error of the 
model was 7.6 %, which can accurately predict the sur-
face roughness and be taken as the objective function 
to optimize the process parameters.

(2) PSO can be used to optimize the process para-
meters of surface roughness in STS turning. However, 
if the selection of learning factors is unreasonable, it is 
easy to cause the standard PSO to fall into local opti-

mal position. When
1

c and
2

c were too small ( 1 =0c ,

2 =0c ), after 250 iterations, the minimum value of Ra

was 0.0555μm and the corresponding best combina-

tion of process parameters was: =0.90tR mm ,

=0.01 /fa mm r , =0.01pa mm , =9.46qD . When
1

c

and
2

c were too large ( 1 =10c , 2 =10c ), after 250 itera-

tions, the minimum value of Ra was 0.0503μm and the 
corresponding best combination of process parame-

ters was: =0.83tR mm , =0.01 /fa mm r , =0.03pa mm ,

=8.54qD . The optimization results of the standard 
PSO showed that if the learning factors were too small 

or large, the results of the standard PSO were quite 
different and the algorithm would fall into the local 
optimal position.

(3) By introducing compression factor ( )j , WCF-

PSO was constructed, which made PSO achieve an 
effective balance between global detection and local 
detection. Under WCF-PSO, after 250 iterations, the 
minimum value of Ra was 0.0486μm and the corre-
sponding best combination of process parameters

was: =0.87tR mm , =0.01 /fa mm r , =0.05pa mm ,

=8.70qD . After verified test, the results showed that
the error between the optimization result and the ex-
perimental result was only 7.0 %, indicating that the 
WCF-PSO proposed in this paper has a better opti-
mization effect.
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