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Surface roughness is an important index to evaluate the quality of a machined surface. In order to accu-
rately predict the surface roughness for slow tool servo (STS) turning, taking toric surface as an example,
response surface methodology (RSM) was used to perform the process test. The second-order response
surface prediction model was established and the variance analysis and reliability test were carried out.
The results showed that the average prediction error was 7.6%. In order to obtain the best process para-
meters, standard particle swarm optimization (PSO) was used. The results showed that the global opti-
mization ability of standard PSO was poor. In order to solve the problem, compression factor was intro-
duced and particle swarm optimization with compression factor (WCF-PSO) was constructed, which
enhanced the convergence of PSO effectively. WCF-PSO was used to optimize the process parameters
and the results obtained were R~=0.87mm, a;=0.01mm/r, a,=0.05Smm, 40=8.70°, with a cortesponding
surface roughness of Ra=0.0486pum. The results of the verification test showed that the actual value was
Ra=0.0520pm, and the error was only 7.0%, indicating that WCF-PSO had a better optimization effect.

Keywords: Slow tool servo, Response surface methodology, Prediction model, Particle swarm optimization, Op-

timization of process parameters

1 Introduction

Compared with ordinary optical surfaces, complex
optical surfaces have unique optical properties, such
as simplifying the optical system and optimizing the
imaging quality, so they are widely used in many fields
[1-6]. For example, toric surface is a typical aspheric
complex optical surface, which has good optical pro-
perties and can form different diopters in two perpen-
dicular directions [7]. Based on this feature, toric sut-
face lenses are widely used to correct astigmatism.
However, the traditional turning process is difficult to
meet the quality requirements of complex optical sur-
faces (such as toric surfaces), which limits their appli-
cation. As a new ultra-precision machining method,
STS turning technology has good machining quality.
In recent years, it has been applied to the turning of

various complex optical surfaces [8-10].

Surface roughness is one of the important indexes
used to evaluate the surface machining quality. It is of
great practical value to accurately predict and control
the surface roughness for STS turning [11]. Lin et al.
[12] carried out simulation experiments using Matlab
software and established the surface topography pre-
diction model of ultra precision machining microlens
array. However, due to various errors in actual machi-
ning, the simulation experiments could not reflect the
real results well. Wang et al. [13] established the sur-
face roughness prediction model of LS-SVM based on
radial basis function by using orthogonal regression

analysis and least squares support vector machine, but
did not get the best process parameters. Shi et al. [14]
established the surface roughness prediction model by
using orthogonal regression analysis method and RSM
respectively. The results showed that the prediction
accuracy of the second-order response surface met-
hod was better than that of the orthogonal regression
analysis method, but the process parameters were also
not optimized. The optimal process parameters can
improve the processing quality or efficiency, which
has practical significance to guide production. There-
fore, it is necessary to optimize the process parameters
[15]. Lin et al. [16] optimized the mathematical model
of surface roughness using satisfaction function met-
hod, but the parameter estimation of this method is
uncertain [17], so it is not easy to obtain the optimal
process parameters. Wei et al. [18] optimized the pro-
cess parameters of piezoelectric vibration energy re-
covery device using standard PSO, and obtained the
best process parameters under different modes, but
the standard PSO is easy to fall into local optimum
position.

According to the research and analysis above, the
turning test was designed based on RSM in this paper.
Four main cutting parameters of tool tip radius (R)),
feed rate (@), cutting depth (a,) and discrete angle (46)
were taken as independent variables, and surface rou-
ghness (Ra) was taken as dependent variable. The se-
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cond-order response surface prediction model was es-
tablished, and the variance analysis and reliability test
of the model were carried out. In order to obtain the
best process parameters, standard PSO was improved.
Compression factor was introduced into standard
PSO. Particle swarm optimization with compression
factor (WCF-PSO) was used to optimize the process
parameters, and the best combination of process pa-
rameters was obtained. The results of the verification
test showed that WCF-PSO proposed in this paper
had a better optimization effect.

2 STS machining toric surface
2.1 Principle and experimental device

STS turning is a new ultra-precision turning tech-
nology, which is mainly used in the precision machin-
ing of complex optical surfaces. Figure 1 shows the
STS turning platform with high precision developed
by our own laboratory. Its layout is ' T ' shaped, and it
mainly consists of two linear motion axes (X-axis and
Z-axis) and a rotary motion axis (C-axis). The X-axis
and Z-axis are driven by two linear motors respec-
tively (The type of the linear motors is SWI2251.M,
and the positioning accuracy is £1pm), and the C-axis
is driven by a precision pneumatic motorized spindle
(The model of the spindle is ZCS-7500D01, which
has a highest rotational speed of 1000 rpm, and its ra-
dial jump is less than 0.1um). In addition, the tool
holder is installed on the Z-axis with good dynamic
performance, and the PCD tool is installed on the tool
holder. Among them, the C-axis drives the workpiece
to rotate, the X-axis drives the tool to feed along the
X direction, and the Z-axis drives the tool to recipro-
cate along the Z direction. The three-axis linkage
drives the tool to perform spatial spiral cutting motion
relative to the end face of the workpiece, realizing the
processing of various complex surfaces [19].
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Fig. 15T turning platform with high precision
2.2 Toric Surface and Machining Method

Toric surface is a typical aspheric complex optical
surface, that has good optical properties and its math-
ematical equation can be expressed by formula (1).

Toric surface is a surface obtained by rotating a base
circle with radius « around the axis in the plane of the
base circle but not through the center of the base circle
with radius Rp, as shown in Figure 2. Where Ry is the
radius of orthogonal arc, « is the radius of base arc,
and Ry >4 [20].

z=RH+a—\j’(RH+«/az—y2)2—x2 )

Complete toric surface

/ Spin axis

Toricsurface lens

Fig. 23D diagram of toric surface

STS turning technology was used to process the
toric surface lenses, and the typical spiral path was se-
lected as the tool path [21]. Equal angle discretization
method was adopted, and the equation of cutting con-
tact points (CCPs) trajectory can be shown in formula
@ [22:

a,
x=—-6. cos0
272_ 1 1

y:a_fel Singi (i=1,2,...) (2)
27

z=f(x,»)
0, =(i-1)A0

Where, (x,y,z)is the coordinate of the CCP in
rectangular coordinate system, z= f(x,y) is the

equation of complex surface, a . is the feed rate, 491 is

!
the positive angle between the connection line from
the CCP to the center of the workpiece and the X-axis

in the XOY plane, andAfis the discrete angle [22].
The trajectory of cutting location points (CLPs) can
be obtained after the CCPs are compensated by tool
compensation algorithm (Z-direction compensation)

[23], as shown in Figure 3. Where, Rt=0-5mm ,

AG=6° anda 5 =lmm . The material of workpiece is

polymethyl methacrylate (PMMA), and the diameter is
D=0.5mm . When machining, the tool cut in from the
outer edge of the workpiece.
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Fig. 3 Tool path of turning toric surface

3 Process test and model establishment
3.1 Test scheme and results

The central composite design (CCD) method in
classical RSM was used to design the experiment. The
response was surface roughness (Ra) , and the four pa-
rameters that have a relatively large influence on the
surface quality of STS turning were selected as factors.

They were tool tip radius (R,) , feed rate (a f) , cutting

depth (a p) and discrete angle (A0) respectively. 5 levels

(—a,-1,0,1,a) were set for each factor, where s was
the value of rotation factor, and it can be determined
by the formulaa = 2*/* (kis the number of factors, and
there were 4 factors in this test, sok =4) [24]. The ro-
tation design of RSM had the property of constant
prediction variance at the equidistant point of the de-
sign center by selecting the reasonable value of the ro-
tation factor ¢, which improved the prediction ac-
curacy [24]. Table 1 is the factor level coding table for
this test design.

After the machining of the workpieces of toric sur-
face were completed, the JB-4C surface measurement

Tab. 2 Experimental data

system was used for measurement. Combined with fi-
gure 4, the measurement method of surface roughness
was described as follows: 1) The workpiece was evenly
divided into 8 parts along the circumferential direction
and marked on the edge of the workpiece. 2) The
probe of the surface measurement system measured
the surface along these 8 lines. 3) The maximum and
minimum values of the 8 results were removed, and
the average of the remaining 6 results was calculated
to obtain the final value of surface roughness. Table
2 shows the 26 groups of experimental data obtained
by the method above.

Tab. 1 Factor level coding table

Factors  Coding > 1 Legels - 5
Rt (mm) Xi 025 0.50 0.75 1.00 1.25
a; (mm/r) X, 0.01 0.02 0.03 0.04 0.05
a_(mm) X; 0.01 0.02 0.03 0.04 0.05
i@(") Xy 2 4 6 8 10

Num- R, ay a A0 Ra Num- R, ar a 40 Ra
ber  (mm) (mm/r) (mm) (°) (um) ber  (mm) (mm/r) (mm) (°) (pm)
1 0.50 0.04 0.04 8 0.1222 14 1.00 0.02 0.04 8 0.0680
2 0.75 0.05 0.03 6 0.1053 15 0.75 0.01 0.03 6 0.0540
3 1.00 0.04 0.02 8 0.0950 16 0.50 0.02 0.04 8 0.0952
4 0.75 0.03 0.01 6 0.0727 17 0.75 0.03 0.05 6 0.0710
5 0.75 0.03 0.03 6 0.0722 18 1.25 0.03 0.03 6 0.1180
6 0.50 0.02 0.02 8 0.0872 19 0.50 0.04 0.02 8 0.1137
7 1.00 0.02 0.02 8 0.0743 20 0.50 0.04 0.04 4 0.1102
8 1.00 0.02 0.02 4 0.0725 21 1.00 0.04 0.04 4 0.0982
9 0.75 0.03 0.03 2 0.0805 22 0.75 0.03 0.03 10 0.0743
10 0.25 0.03 0.03 6 0.1612 23 0.50 0.02 0.04 4 0.1038
11 0.50 0.04 0.02 4 0.1067 24 1.00 0.04 0.04 8 0.1058
12 0.75 0.03 0.03 6 0.0685 25 1.00 0.04 0.02 4 0.0900
13 0.50 0.02 0.02 4 0.0920 26 1.00 0.02 0.04 4 0.0683
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3.2 Establishment of prediction model
RSM is a kind of data processing method. The spe-

cific fitting method is to describe » coordinates (xi,y,-)

of sampling points in the coordinate system according
to the observation data, i =1,2,...,n, and then con-
struct the responsding surface function [25]:

f(x) =Cy +c,¢1(x)+c2¢2(x)+~-+cm¢2m(x) (3>

Where, € is a constant, C;,Cy,...,C,, are undeter-

mined coefficients, and #;(¥) is a kind of simple
function, (k =1,2,...,m).

In order to make the constructed function @ (¥)
better reflect the overall shape of the responsding sur-
face function f(x), the function @ (X) is required to

minimize the sum of squares (R) of deviations at each
point [26]:

min R=3[4(x) -y @

In this paper, the least square method was used to
fit the response surface. RSM was used to approxi-
mate the relationship between design objective and va-
riables, and the multiple regression equation was used
to fit the functional relationship between influencing
factors and response. The quadratic complete polyno-

mial was selected as the constructor function @ (X) to

form a typical second-order response surface model
[27]:

k k k-1 k
2
J)=c+ Zcz’xt + 2 :Ci+4xi + z: Zcijxiyj te& ©)
i=1 i=1

Whete, kis the number of process parameters,

k=4in this paper. € is the constant, (is the coeffi-
cient of one degree term, C; 4 is the coefficient of the

quadratic term, Cij is the coefficient of the interactive

=l j>i

term, Yand y ; are independent variables, and ¢ is the

error of experimental data.

Based on the above model, quadratic regression
fitting was performed according to the experimental
data in Table 2, and the second-order response regres-
sion equation was obtained by solving:

Ra=0314-0.476R -2.207a,0.255a,-0.01 1A6+0.783R +a,-0.583R «a, +13.563a,+a,+
0.001R, +AG+0.136a,+A6+0.005a, +A6+0.282R *+26.28 1a,*+6.781a,+0.0005A6* (©)

3.3 Model analysis

The regression equation was analyzed using vari-
ance analysis, and the data on variance analysis was
obtained, as shown in Table 3. Where, the P-value re-
presents reliability, and P=0.05 is the boundary level
of acceptable error (generally P<C0.05 indicates the
good significance ) [27]. It can be seen from Table 3
that the P-value of the overall model was less than
0.0001 (P<<0.0001), indicating that the regression mo-
del reached an extremely significant level and the error
of the whole model was small in the experimental er-

ror range. R’ of the model was 0.9809, and adjusted
R® of the model was 0.9567. The difference between
the two was very small, and R* was close to 1, indica-

ting that the model obtained in this experiment had
high credibility. The P-value of the lack of fit term of
the model was 0.3881 (P>0.05), so the lack of fit term
was not significant, indicating that the equation was
tully fitted and could better desctibe the real relation-
ship between various factors and response [26-27].

It can be seen from the results of variance analysis

in Table 3 that the tool tip radius (R t) in the one de-

gree terms of the second-order response regression

equation had an extremely significant effect on surface
roughness (P <C0.01), while the feed rate (a f') and

discrete angle (Af) had significant effects on surface
roughness (P<C0.05). The order of factors affecting
surface roughness was R>A0>a a,. a,-noin the
interactive terms had a significant effect on surface
roughness, R’ in the quadratic terms had an extre-
mely significant effect on surface roughness, a f2 had

a significant effect, while the rest of the effects were
not significant.

3.4 Reliability test of the model

It was evident that the significance of the overall
model was good after the above significance analysis,
so further reliability test of the model was needed. Fi-
gure 5(a) shows the relationship between the actural
value and the predicted value. It can be seen from the
figure that the data fitted by the model were basically
around the best simulation curve (i.e., the difference
between the predicted value and the actural value was
small), indicating that the prediction effect of the mo-
del was good. In addition, the residual analysis was
carried out. Taking the residual as the abscissa and the
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normal probability as the ordinate, the distribution di-
agram of residual and normal probability was drawn,
as shown in Figure 5(b). It can be seen from the figure
that all residual distribution points were basically dis-

Tab. 3 Results of variance analysis

tributed along a straight line, showing a linear relation-
ship, which met the requirements of normal hypothe-
sis. Most of the test data was distributed in the interval
(-2, 2) with a confidence level of 95 %, indicating that
the reliability of the test data was good [27].

Soutrce Sum of Squares Freedom Mean Square F-Value P-Value
Model 0.013 14 9.431x10-4 40.45 < 0.00071%**
Rt 3.735%10-3 1 3.735%10-3 160.20 < 0.0001%*
af 1.284x104 1 1.284x104 5.51 0.0387*
ap 1.715%106 1 1.715%x10°6 0.074 0.7913
A 1.295%104 1 1.295x10+ 5.55 0.0380*
Rt'af 6.123%10- 1 6.123%105 2.63 0.1334
Rt'ap 3.393%10-> 1 3.393x10-> 1.46 0.2530
Rt Al 4.516%106 1 4.516x10-¢ 0.19 0.6684
af'ap 2.943x10-> 1 2.943x10-> 1.26 0.2851
af-AH 1.183%x104 1 1.183%x10+ 5.07 0.0457*
ap-AH 1.806%107 1 1.806%107 7.747%10-3 0.9314
Rt2 5.416%10-3 1 5.416%1073 232.30 < 0.0001%**
afz 1.206x104 1 1.206x10+ 5.17 0.0440%
apz 8.027%10-6 1 8.027x10-6 0.34 0.5692
AO? 7.448x10-3 1 7.448%10- 3.19 0.1015
Lack of Fit 2.496X104 10 2.496x10-3 3.65 0.3881
Residual 2.565%10-4 11 2.332x10-3 - -
Pure Error 6.845x10-¢ 1 6.845%10-6 - -
Total 0.013 25 - - -

Remarks: * represents significant, ** represents extremely significant. R*=0.9809 , adjusted R*=0.9567 .
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Fig. 5Reliability test of the model, (a) Relationship between the actural value and the predicted value, (b) Distribution diagram of
residual and normal probability

In order to check the actual prediction effect of the
above regression model, three groups of process para-
meters were randomly selected for processing and the
surface roughness was measured. Comparing the pre-
dicted value and the actual value of the surface rou-

ghness, the prediction error of the model was obta-
ined, and the results are shown in Table 4. It can be
seen that under the three groups of process parame-
ters, the maximum prediction error was 8.3 %, and the
average prediction error was 7.6 %. The results
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showed that the regression model can be used to pre-
dict the surface roughness of toric surface accurately,

and the model can be used as the objective function
to optimize the process parameters.

Tab. 4 Comparison between predicted results and excperimental results

Ra () Prediction Average
Number R (mm) 4, (mm/r)  a(mm) A0 (®)  Predicted Actual error prediction
value value crror
1 0.25 0.03 0.03 4 0.1641 0.1777 8.3%
0.75 0.01 0.04 8 0.0538 0.0578 7.4% 7.6%
3 1.00 0.03 0.03 4 0.0790 0.0847 7.2%

4 Process parameters optimization

The best process patrameters can improve the pro-
cessing quality or efficiency, which has practical signi-
ficance for guiding production, so it is necessary to
optimize the process parameters. PSO is a new intelli-
gent optimization algorithm, which has the advantages
of high precision, fast convergence speed, and easy
programming. At present, it is widely used in natural
and engineering fields such as function optimization,
neural network optimization training, and combinato-
rial optimization [28-30]. Therefore, it can be applied
to the process parameters optimization of surface rou-
ghness.

4.1 Optimization with standard PSO

Based on swarm intelligence theory, PSO is usually
used to solve the problem of optimization. In this al-
gorithm, the solution of each optimization problem
can be regarded as a particle in the search space, and
all particles constitute a particle swarm. Each particle

k

12

k+1 _ k k+1
X, =X, +Vm

124

Where, Vink and xmk are the velocity and position
of the No. i 1<i<M) particle in the No. n
(1< n < N)dimension space in the No. k(1< k < K)
iteration, respectively. In order to prevent the blind

search of the particles, the position and speed of the
particles are usually limited within a certain range:

x.. =[0.25 001 001 2]
x. =[1.25 0.05 0.05 10]

8)
Vinax = 0'2(xmax - xmin)
vmin = O
»m and x represent the set population size and the
maximum number of iterations, respectively, taking
am =24 and K=250. rand , are random numbers
distributed in the interval (-1, 1) generated by rand
function, c and c, are learning factors, ande is iner-

tia weight. » determines the extent to which the par-
ticles inherit the previous flight speed. Reasonable se-
lection of » can achieve the balance between global

has attributes such as position, velocity, and fitness.
The position represents a point in the solution space,
and velocity represents the direction and distance of
particle movement. The fitness value is calculated by
the fitness function, which is used to evaluate the po-
sition of particles. The initial position, velocity and fit-
ness of each particle are set randomly. With the itera-
tive process, the velocity and position of each patticle
are constantly updated by following the individual ex-

k k ..
tremum p; and group extremum £ . Individual ex-

k., k k k .
tremum p; =(P; 2Py »* "> Py ) tefers to the optimal

position of particle I from the initial to No. k iteration.

k

k k k
Group extremum g =(g; ,&, ,**»,gy ) refers to the

optimal position of the whole group from the initial to
No. k iteration. N is the dimension of the particles,
namely the number of process parameters that need
to be optimized, so N=4. The updating formula of
velocity and position of the particles is as follows [31]:

1 k k k k k
Vi ’ :a)vin +clrl(pin _'xin )+C2r2(g’l _xi”)

)

search and local search. Most studies show that the al-
gorithm has good global search ability and can quickly
locate the region close to the global optimal solution

by setting a large value of @ at the beginning of the

iteration. By reducing the value of @ at the later stage
of iteration, the algorithm has good local search ability,
so as to quickly obtain the accurate global optimal so-
lution [30-31]. Therefore, linear decreasing weight me-

thod was used to set @ [32]:

k >
(k) = Oy — (a)start = Wy )(E) ©9)

Where, @, is the initial inertia weight

(o

vare =09, @, is the ending inertia weight

((l)end =0.4) , kis the current iteration number, and x

is the maximum iteration number. In order to
describe the optimization process of PSO better, the
flow chart of PSO was established, as shown in Figure
0.
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Although the standard PSO has fast convergence
speed, it is easy to fall into the local optimal position.

The unreasonable selection of learning factors (cl,cz)

is an important reason for it to fall into the local opti-
mal position [33]. According to Formula (7),
vkarl = a)v[.nk o0 (gnk —xmk) , when ¢;=0 . Tt shows
that the particles search the goal through the optimal
global information at this time, but in the case of lack
of individual cognition, the particles cannot find the

optimal solution the local area.

vkarl = a)vl.nk +¢n( pmk —xmk) , when ¢,=0. Tt shows
that the particles have the ability of local optimization,
but only when the particle swarm can search the global
optimal region, local search can find the optimal solu-
tion, otherwise it is easy to fall into local optimum. In
addition, when c and c, Are too large, the particles

in

will converge to the local optimum prematurely [33].

The optimal positions Velocity and
of the individual and location were
group were calculated updated

The optimal positions
of the individual and
group were updated

Fitness value
of the particle
was calculated

Particle and
velocity
initialization

Fitness value of the
particle was
calculated

Maximum number
of iterations

Fig. 6 Flow chart of PSO

Equation (6) was used as the fitness function
(test_func) of standard PSO (Common PSO), and the
corresponding program of standard PSO was written

using Matlab. When ¢ =0 and ¢ =0, 250 iterations were

performed, and the result was shown in Figure 7(a).
When c, and c, were larger, €; =10 and ¢, =10 were ta-

ken, the same method was adopted and the result was
shown in Figure 7(b). It can be seen from Figure 7 that
the optimal individual fitness value obtained by stan-

dard PSO was 0.0555 when ¢,=0 and ¢,=0 | and the
corresponding position of the particle was (0.90, 0.01,

0.01, 9.46). That is, when R =0.90mm ., _ o1/ 1

> @ —0.0lmm > and AG=9.46" , the surface roughness
P

of the machined toric surface was the lowest at 0.0555
pm. When e, and o, were larger, the optimal indivi-

dual fitness value was 0.0503, and the corresponding
position of the particle was (0.83, 0.01, 0.03, 8.54).

That when R, =0.83mm

iS, a, =0.0lmm/r >

a,=0.03mm > and A@=8.54", the surface roughness

of the machined toric surface was the lowest at 0.0503
um. Through comparison and analysis, it can be seen
that the optimization results obtained by standard
PSO were quite different when the values of learning
factors selected were different. In addition, from the
particle dynamics model in Figure 7, it can be seen that
the final particle swarms under different learning
factors were both relatively dispersed, and neither of
them reached the global optimal position. This indica-
tes that the global optimization ability of standard
PSO was poor (i.e., poor convergence), and it would
fall into the local optimal position when e, and e,

were too small or large, which explains the reason for
the large difference between the two optimization re-
sults. Therefore, the best combination of process pa-
rameters of the above mathematical model cannot be
obtained by the standard PSO.

Particle Dynamics
T T T T f
i Global
0.0595 «+ 15 $
T = / best
0.059 Z10 & e
0.0554631 = test_func( [ 4 inputs | ) E 2 .\'
0.0585 85 ] —
~_ Particle
i .'/\‘swarm
v 0.058F 0
E 0 1 2
200575 © Outputs: | Dimension 1
g ¢ R=0.90mm : )
& 0.057 : a;=0.01mm/r ; :;?&:1:’::: Som““’" PSO
i a=0.0mm : s
i i # of particles : 24
0.0565 A0=946° Function : test_func
0.056
0.0555 | Blue = Current Positions
Red =Global Best
0 50 100 150 200 250
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Fig. 7 Optimization results of standard PSO, (a) Optimization result (¢,=0,¢,=0 ), (b) Optimization result (¢,=10 ,¢,=10)
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4.2 Optimization with WCF-PSO

The learning factors (Clacz) determined the influ-

ence of the experience information between the par-
ticles on the trajectory of the particles, which reflected
the information exchange between the particle swarm.
Through the above analysis and optimization, it was

found that if the values of learning factors (Cl ) Cg) were

different, the optimization results were quite different.

In addition, when the values of learning factors (Cl ) 02)

were untreasonable, it can be known from the above
particle dynamics model that the convergence of the
algorithm would be poor and therefore easy to fall into

the local optimal position.

In order to solve the above problems, the standard
PSO was improved. By adjusting the learning factors
reasonably to control the flying speed of particles
effectively, the algorithm can achieve an effective ba-
lance between global optimization and local opti-
mization. The introduction of compression factor ()

can effectively adjust the parameters in the formula of
particle velocity and position, so as to ensure the con-
vergence of the PSO. After introducing the compres-
sion factor(p), the particle swarm optimization with
compression factor (WCEF-PSO) was constructed, and
the updating formula of velocity and position of the
particles was changed to [34]:

k+1 _ k k k k k
vin - ¢.[a)vin + clrl (pin - xin ) + 02r2 (gn - 'xin :I

2
12-Cc-~c*—acy

Psrticle Dynamics
0.06

n

H E Global
L CHCy=4.1 best

3

/i,
pé:

0.0486369 = test_func( [ 4 inputs | )

Dimension 4
n

0.056

e
)

0.5 1 L5
Dimension 1

Fitness value
54
=3
&
-

PSO Model : WCF - PSO
Dimensions : 4

# of particles : 24
Function : test_func

0.052

Blue = Current Positions

Red = Global Best

0.048
0 50 100 150 200 250

Epoch

Fig. 8 Optimization result under WCH-PSO

According to the study, ¢, +¢, =4.1was taken [34],
and compression factor (p) was 0.73 at this time. A to-

tal of 250 iterations were carried out to obtain the op-
timization result, as shown in Figure 8. It can be seen

0.6 A Z(um)

0.4

(10)

(C=c, +c,)

from the figure that the final optimal individual fitness
value obtained by WCF-PSO was 0.0486, and the
corresponding position of the particle was (0.87, 0.01,

0.05, 8.70). That is, when R =0.87mm ., _o 61/ 1

s a,=0.05mm > and A#=8.70°, the surface roughness

of the machined toric surface was the lowest at
0.0486pm. In addition, by comparing Figure 7 and Fi-
gure 8, the particle dynamics model was analyzed. It
can be seen that after 250 iterations, the final particle
swarm was dispersed under the standard PSO, and the
global optimal position was not found, indicating that
the global optimization ability of the algorithm was
poor and the algorithm fell into local optimal position
easily. After 250 iterations, the final particle swarm
converged at a point under the improved WCF-PSO,
indicating that the optimal position was found in the
global range. It showed that compared with the stan-
dard PSO, the improved WCF-PSO had better global
search ability and better optimization effect.

.050 [um) 1
um|

0.2
0.0
-0.2

.590 [um]
.0132 (mm)
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Fig. 9 W/or/épzece of toric Mlifﬂ(e and the value of Ra of a part on it (Optimization by WCEF-PSO), (a) Machined workpiece of
toric surface, (b) The valne of Ra of a part on the toric surface
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In order to test the accuracy of the optimization
result uner WCF-PSO, it was necessary to verify it by
carrying out process test. In order to facilitate the test,
the process parameters obtained by WCF-PSO were
properly adjusted, A@=9"was taken, and the other pa-
rameters remained unchanged. The machined work-
piece of toric surface is shown in Figure 9(a), and its
surface roughness was measured. The measurement
method was the same as above. The final measure-
ment result was Ra=0.0520um , and Figure 9(b) shows

the value of Ra of a part on the toric surface (In the
roughness profile graph, the abscissa represents
sampling points and ordinate represents the Z value
of the workpiece surface). Compared with the opti-
mization result (Ra=0.0486 um) under WCF-PSO, the
error was only 7.0 %, indicating that the WCF-PSO
proposed in this paper had a better optimization
effect.

5 Conclusions

(1) RSM was used to design the experiment, the
second-order response surface model was obtained
and the variance analysis and reliability test of the
mathematical model were carried out. The analysis re-
sults showed that the P-value of the overall model was
less than 0.0001 (P<<0.0001), indicating that the mo-

del reached an extremely significant level. R” of the
model was 0.9809, which was close to 1, indicating
that the model had high credibility. Most of the test
data was distributed in the interval (-2, 2) with a con-
fidence level of 95 %, indicating that the reliability of
the test data was good. The results of the verification
test showed that the average prediction error of the
model was 7.6 %, which can accurately predict the sur-
face roughness and be taken as the objective function
to optimize the process parameters.

(2) PSO can be used to optimize the process para-
meters of surface roughness in STS turning. However,
if the selection of learning factors is unreasonable, it is
easy to cause the standard PSO to fall into local opti-

mal position. When c, and e, were too small (C1:0 ,

¢y :0), after 250 iterations, the minimum value of Ra

was 0.0555um and the corresponding best combina-
tion of process parameters was: R,=0.90mm

a, =0.01lmm/r > a, =0.01mm > A6=9.46" . When <

and ¢, Were too large (¢ =10 ,6y =10), after 250 itera-

tions, the minimum value of Ra was 0.0503um and the
corresponding best combination of process parame-

ters was: Rl =0.83mm 5 af:0.0lmm/r > a, =0.03mm >

AB=8.54". The optimization results of the standard
PSO showed that if the learning factors were too small

or large, the results of the standard PSO were quite
different and the algorithm would fall into the local
optimal position.

(3) By introducing compression factor (p) , WCF-
PSO was constructed, which made PSO achieve an
effective balance between global detection and local
detection. Under WCF-PSO, after 250 iterations, the
minimum value of Ra was 0.0486pm and the corre-
sponding best combination of process parameters

was: Rt=087mm 5 af=0.01mm/r > ap=0.05mm >

AB=8.70". After verified test, the results showed that
the error between the optimization result and the ex-
perimental result was only 7.0 %, indicating that the
WCF-PSO proposed in this paper has a better opti-
mization effect.
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