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The milling process is widely used industrially and the quality of the obtained milled products should be 
controlled because it affects their performance in exercise. This work correlates the quality of the 
machined surfaces with the adopted locating system, the shape deviations of the workpiece datum and 
the machine tool. In other terms three error sources of machined surfaces were taken into account in the 
proposed method. An analytical model was set up and implemented through Matlab® to simulate the 
quality effects of a milling process. It was applied to two face milling processes characterized by two 
different locator configurations. It was proved that machine tool volumetric error influences the flatness 
of the milled surface, while the locator configuration and the datum form deviation affect the orientation 
of the milled surface, as should be actually.
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Introduction

The milling process is widely used industrially be-
cause it allows manufacturing surfaces with many di-
fferent and complex shapes [1]. High-value applicati-
ons require control of the quality and the manufactu-
ring signature of the products because they affect their 
performances in exercise [2-3]. Achieving this aim is 
not so easy. Roughness is the most industrially used 
indicator to describe surface quality; however, it is not 
enough to perform evaluations on workpiece perfor-
mances [4]. Therefore, it is needed to add an indicator 
of surface geometrical deviation, such as flatness and 
orientation. 

At the same time having a model to foresee the ge-
ometrical deviations, the surface roughness and the 
surface morphology of a manufactured part may help 
production engineers [5]. Their experience guides 
their choices of the machine, the tools and the process 
parameters. 

The most studied milling process was the peri-
pherical one because it involves a 2D study. The 
effects of the cutting speed, the tool wear and vibra-
tion on the machined surface topography were studied 
in [6]. The kinematics of the machine tool was put to-
gether the geometry of the tool to foresee the wall sur-
face [7]. A methodology to correct the relative error 
motion between the tool and the workpiece was pre-
sented by [8]; it uses reference parts as methodological 
standards. A system able to predict surface texture 
from highly sparse learning data was developed by [9]. 

The effect of cutter runouts on roughness was in-
vestigated by [10]. This model was extended by [11] to 
consider flank wear. Some researchers studied the in-
fluence of tool deflection on the manufacture surface 

profile [12-13]. Other researchers correlated cutting 
vibrations and the quality of machined surface [14-16]. 
Lartigue et al. investigated the influence of CAM pa-
rameters on form deviation and roughness of the ob-
tained surface [17]. Zhang and Guo proposed an error 
compensation method of the tool path [18]. A model 
to simulate the geometrical deviations in the midplane 
position of cavities machined by milling was studied 
by [19]. 

A force model combined with a kinematic model 
was used to evaluate the topography in face milling 
operations [20]. Altintas and Engin developed a para-
metrical model of each cutting edge profile to move 
during milling that allows estimating the cutting forces 
and vibrations [21]. The kinematic interference 
between inserts and material was translated in a model 
by [22]. The surface roughness was estimated through 
a geometrical model of face milling by squared inserts 
[23]. Torta et al. proposed a model to foresee the rou-
ghness in face milling that takes into account different 
tool geometries and the relative alignment/mounting 
errors [24]. This model was validated on a high-feed 
milling operation. Cutting force and temperature were 
studied as a function of the milling insert type in [25] 
and of the milling parameters in [26-27] in face milling 
of steel workpieces. The best machining strategy to 
improve the accuracy of the 3D shapes is studied in 
[28]. 

All the previously described approaches model 
only one source of machining error, that due to ma-
chine tool. However, in addition to the machine tool 
error, there may be a misalignment between the work-
piece and the machine reference systems. This misalig-
nment affects the location and the orientation of the 
surface to the machine. It depends on the deviations 
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from nominal of the contact points among the used 
locators and the part surfaces, that are connected with 
the deviation from nominal of locators’ positions and 
the shape deviations of the workpiece surfaces into 
contact with those locators. 

In the literature, many are the papers that evaluate 
how fixture affects the part deviation using screw 
theory [29-30], geometric perturbation techniques 
[31], stability index [32], small-displacement torsor 
concept [33]. Optimization techniques were used for 
the minimization of localization error or feature vari-
ation [34-35]. Genetic Algorithms were used to define 
the layout of the fixture in [36]. Li et al. considered the 
influence of the deviations of the locating system, of 
the machine tool together and the cutting parameters 
on the quality of a milled surface [37]. However, even 
in these cases, the approaches proposed by the litera-
ture involve only one or at most two sources of error 
in machining operations.

This paper increases knowledge on machining by 
considering the contributions of three sources of er-
rors on the quality of a milled surface. The errors con-
nected with the used locator system, to the part sur-
faces and machine tool, were modelled. It presents a 
framework inside which it is possible to model diffe-
rently the contribution to milled part deviation due to
each error sources.

The scope of this work is to kinematically correlate 
the geometrical error (or manufacturing error) of a 
surface obtained through a face milling with the devi-
ations in locators‘ positions, the part shape deviations 
surfaces that are in contact with the locators and the 
volumetric error of the machine tool. 

In previous works, the authors statistically predic-
ted the deviation from nominal of a hole or a hole pat-
tern position connected with the deviations from no-
minal of the positions of six locators in the 3-2-1 lo-
cating scheme [38-39]. Moreover, the deviations in the 
fixture position were combined with the machine tool 
error [40], with the form deviation of the workpiece 
datum surface [41] or with both the machine error and 
the datum form deviation [42].

In this work, a model was developed and imple-
mented by Matlab® software that considers the devi-
ations from the machine reference frame of the part 
reference frame due to the locators, datum surfaces 
and machine tool. In this way, it was possible to avoid 
a lot of experimental tests and, therefore, time, energy 
and materials involved by them. The proposed appro-
ach was applied to two milling processes.

In §2, the model is described, while in §3, it is ap-
plied to two milling processes characterizing two di-
fferent configurations of locators. 

Materials and methods

The nominal surface obtained through a face 

milling process is represented by a skin model that me-
ans through point clouds. The deviations in the loca-
tion of the points on the milled surface and that on 
the nominal surface represent the geometric errors. 
They are modelled as a function of locators, workpiece 
and machine tool.

The deviations from the nominal of the workpiece 
reference frame are connected with the machining fi-
xture that is made by reference elements. In this study, 
the 3-2-1 locator scheme was considered, whereas six 
locators influence the location of the three mutually 
orthogonal planes of the reference frame. Locators‘ 
misalignment involves a deviation from the nominal 
of the workpiece reference frame and, therefore, of 
the milled surfaces, such as flatness or an orientation 
error on face milled surfaces. The six locators have 
eighteen coordinates that define their position of 
which only six ones influence significantly the machi-
ning error [38]. Each of the six coordinates followed a 
probability density function.

Every manufacturing process leaves on the ma-
chines surfaces a signature that typically involves 
peculiar deviation from nominal design [43-45]. A Si-
multaneous Autoregressive Model of first-order 
SAR(1) was used to consider the signature on the da-
tum planes contacting the six locators because it can 
take into account correlated phenomena in easy ways. 
A set of evenly distributed points was used to simulate 
the three planes into contact with the six locators, 
while the workpiece reference frame was simulated 
through the six points on the three datum planes 
nearest to the locators.

A machine tool is a kinematic chain of compo-
nents, whose geometric deviations may be modelled 
using a transformation matrix and the machine tool 
resulting error is given by multiplying the transforma-
tion matrices according to the order of the kinematic 
chain [43]. This paper considers the static volumetric 
of the machine tool.

The plane to be milled was represented by 3D 
points, that are arranged in a grid along with the two 
x-y directions and the distance between two consecu-
tive points is equal to the nominal radius of the cutter 
along each of the two x-y directions (see Fig. 1a); thus, 
a matrix of m x n 3D points represents the skin model 
of the nominal plane (see Fig. 1b). The coordinates of 
each point belonging to the milled surface in the work-
piece reference frame (WRF) are estimated starting 
from the coordinates in the machine reference frame 
(MRF) and switching to the locator reference frame 
(LRF) and then to the workpiece reference frame 
through the laws of robot kinematic, as shown in Fig. 
2. Fig. 2 shows the geometrical deviation of a milled 
surface due to the synergistic effect of locators (first 
arrow), the flatness of datum surface (second arrow) 
and volumetric error of the machine tool (third 
arrow). Finally, the coordinates of each point in the 
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WRF are corrected with the error of the machine tool to have the points on the milled surface. 

 

Fig. 1 a) Set of diameters of the cutter during the milling, b) Skin model shape of a milled plane

 

Fig. 2 Scheme of the proposed model 
 
The method of least squares was used to estimate 

an approximate plane from the coordinates of the 
points on the milled surface. The flatness was evalu-
ated as the sum of the distances from the least-squares 

plane of the two points that are the most distant. To 
evaluate the deviation of the milled surface orienta-
tion, the angle between the normals of the top and 
bottom planes was calculated. 

The angle between the normals of top and bottom 
planes and the flatness of the actual milled surface re-
present the functional requirements, as shown in Fig. 
3 on the right. Fig. 3 on the left shows the part devia-
tion connected with both locators and datum surfaces. 

The workpiece position was built through the six 
locators shown in Fig. 4. The coordinates of the i-th 
locator are represented by pi(xi, yi, zi). The proposed 
model express the coordinates of the points belonging 
to the milled surface in the workpiece reference frame. 
It takes as input the dimension of the workpiece, the 
nominal locator configuration, the diameter of the 
cutter, the number and nominal coordinates of the 
points on the top surface and the manufacturing sig-
nature of the milling process. 

 

Fig. 3 Functional requirements to be inspect at the end of 
milling process 
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Fig. 4 a) The first configuration of the locators, b) The second configuration of the locators

2.1 Contribution of locators’ deviations from nominal  

Six of the eighteen coordinates of the six locators 
define their position [38]. A deviation from nominal 
affects each of these six coordinates that follows a 

Gaussian N(0, s2) distribution. 
The locator reference frame (LRF) is constituted 

by three axes defined by the actual positions of the six 
locators pi with i=1...6. In the LRF it is possible to 
find the real coordinates Pi’(xi’, yi’, zi’) of the i-th point 
on the top surface of the plate by the nominal ones 
Pi(xi, yi, zi) through a homogeneous transformation 

matrix ����� : 

 P ! = "#�$% ∗ P = ' R t 
o( 1) ∗ P  (1) 

with the rotational matrix R, the translation vector 
t0, and oT is a zeros vector [3x1]. In detail  

 R = �n��n��n��
� (2) 

 n� =  !"∗$%‖ !"∗$%‖ (3) 

 p'( = p( − p' (4) 

 *+ = $%∗$,‖$%∗$,‖  (5) 

 *- =  %.∗ %,‖ %.∗ %,‖  (6) 

 p/0 = p0 − p/ (7) 

 p/1 = p1 − p/ (8) 

 t2 = �n�� ∗ p'n�� ∗ p3n�� ∗ p/
� (9) 

2.2 Contribution of form deviation on workpiece da-
tum surfaces 

The form deviation or the manufacturing signature 
(f) of each plate surface contacting the locators was 
simulated through a spatial autoregressive (SAR) 
model [47]: 

 f = (I − ρV)7/ϵ (10) 
with the identity matrix I, the spatial autoregressive 

parameter r (whose value is 0.9, the spatial weighting 

matrix V and the white noise 9~(0, σ1>). The matrix 
W is estimated as: 

 w?@ = ABCDBC∑ AFCDFCF  (11) 

where GHJ  is the Cartesian distance calculated 

between the Pl and the Pj points, and I?@ is evaluated 

as: 

 I?@ = K1, if point N and O belong to a same triangle0, otherwise  (12) 

Given a set of samples{(PQ, SQ , TQ)}QU/W  from Eq. 
(10) to represent the three surfaces of the plate into 
contact with the 3-2-1 locators, Once obtained some 

samples {(PQ, SQ , TQ)}QU/W   from Eq. (10) on the three 
plate surfaces, it is needed to determine a set of six 
points, R, S, T, U, W, Z so that  

 XY*(|R − p/|, |S − p1|, |T − p0|) (13) 

 XY*(|U − p'|, |W − p(|) (14) 

 XY*(|Z − p3|) (15) 
Therefore, it is possible to express the coordinates 

of the points Pi’(xi’, yi’, zi’) of the top plane of the 
workpiece from the LRF to the part reference frame 

(PRF): 

 P2̀ ` = R 71 ∗ P2′/  = jR` t2′o� 1 j ∗ P2′ (16) 

with R’ is the rotational matrix which allows 
passing by the LRF to PRF, while ti’ is the vector 
describing the LRF origin position referred to the 
PRF, and oT is a zeros vector [3x1]. In detail 

 R′ = �n��′n��′n��′� (17) 

 n�′ = kquq∗$%`‖kquq∗$%`‖ (18) 
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v′W′ = W′ − E′ (19)U` = R 7/ ∗ Uy (20)z′ = R 7/ ∗ EWy (21)Z` = R 7/ ∗ Zy (22)*+ = $%`∗$,`‖$%`∗$,`‖ (23)

*- = �q�q∗�q�q
‖�q�q∗�q�q‖ (24)�′�′ = T′ − R′ (25)�′�′ = S′ − R′ (26)R` = R 7/ ∗ Ry (27)

S` = R 7/ ∗ Sy (28)�′ = R 7/ ∗ Ty (29)

t2′ = �n��′ ∗ W′n��` ∗ Z′n��` ∗ R′ � (30)

2.3 Contribution of the volumetric error in the ma-
chine tool

It is possible to estimate the position error Δp of 
the mill tip and the direction error Δd  of the tool axis 
as:

�∆ ∆�� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
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⎢⎢
⎢⎡

1 1 1 0 0 0 …0 0 0 0 0 0 …T − N T − N −N −S 0 0
0 0 0 1 1 1 …0 0 0 N − T N − T 1 …0 0 0 0 0 0
0 0 0 0 0 0 …1 1 1 0 0 0 …0 0 0 0 0 0
0 0 0 0 0 0 …0 0 0 1 0 0 …−1 −1 −1 0 0 0
0 0 0 0 0 0 …0 0 0 1 1 1 …0 1 0 0 0 0
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= Cd (31)

with the translation d and rotation e  errors (e.g. 

ez(x) is the rotational error around the z-axis during 
the translation along the x-axis), that follow Gaussian ��0, ��1� or ��0, � 1� distributions respectively. 

Therefore, the �∆�∆ � vector is distributed according to

with a multivariate Gaussian distribution, with null 

means and covariance matrix sue to ¡ ∑ ¡¢ . The 

covariance 18x18 matrix S is diagonal with the first 

nine diagonal elements equal to ��1 and the remaining 

diagonal elements equal to � 1.

2.4 Coordinates of points on the milled surface

To the coordinates in the PRF was added the 
machine tool volumetric error to obtain the 

coordinates of the i-th point £¤̀ `` of the milled top 
surface in the PRF:P2̀ `` = P2̀ ` + Nk`′ (35)

where l is the depth of cut. 
From equation (16):P2̀ ` = R 71§ R 7/�P2 + ∆ �y ¨/ (33)

The mill tool direction in the PRF is given byk`` = R 71§ R 7/(k + ∆�)y ¨/ (34)

where k is the mill tool direction in the machine 
tool reference frame.

The distances of the two points more distant from 
the plane connected with the least-squares method 
were used to estimate the flatness.

Discussion of the results

A plate of 100 mm x 120 mm with a thickness of 
60 mm was considered. The locators are placed accor-
ding to a Gaussian probability density function, cen-
tred on the nominal position and characterized by a 

standard deviation � = 0.01 ªª. Their nominal po-
sitions were p1(95, 70, 0), p2(12.5, 117.63, 0), p3(12.5, 
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22.37, 0), p4(0, 25, 5), p5(0, 115, 5), p6(40, 0, 5), as 
shown in Fig. 4a. The machine tool volumetric error 

was characterized by �� = 0.01 ªª and �  =0.01 ∗ ¬/­y ªª. The SAR model had a white noise 9~(0, σ1>) with s=0.01 mm and a spatial autoregres-

sive parameter r=0.9. The deviation of the points on 
the first datum along a direction parallel to the X-axis, 
that of the points on the second datum along a di-
rection parallel to the Y-axis and that of the points on 
the third datum along a direction parallel to the Z-axis 
followed a uniform probability density function with 

s=0.001 mm. These values were taken from the lite-
rature on the locating equipment, the machine tools 
and the Geometric Dimensioning and Tolerancing 
(GD&T). Fig. 5 shows one example of simulated 
milled surface.

The considered performance indicators are the 
flatness of the milled plane and the angle between the 
milled surface and the bottom surface. The obtained 
numerical results are shown in Figure 6 (L = locator 
error, M = machine tool volumetric error, F = datum 
form deviations, L+M = locator error+volumetric er-
ror, L+F = locator+datum flatness, F+M = datum
flatness+volumetric error, L+F+M = locator er-
ror+volumetric error+datum flatness). The conside-
red number of Monte Carlo simulation runs was 
100,000. As it can be seen from the data, the volume-
tric error of the machine tool volumetric error is the 
only factor that influences the flatness, while the angle 
is affected by the locators‘ deviations and the datum 
form deviations. The obtained results are aligned with 
what happens. The flatness indicates the dispersion of 
the surface points around a least-squares plane that 
has an orientation different from the nominal, the flat-
ness is due to the volumetric error of the machine tool, 
while the orientation of the least-squares plane de-
pends on the locator positions and datum surface de-
viations.

A further positioning of the locators was taken into 
account: p1(95, 60, 0), p2(5, 111.96, 0), p3(5, 8.04, 0), 
p4(0, 5, 5), p5(0, 115, 5), p6(95, 0, 5), see Fig. 4b. The 
other parameters are kept unchanged. The results are 
shown in Fig. 6; they are similar to those previously 
described.

An analysis of variance (ANOVA) was performed 
to evaluate the influence of locators‘ deviations, datum 
form deviations and volumetric error of machine tool 
on angle values; the results are shown in Table 1. The 
datum form and locators‘ deviations significantly 
affect the angle results; their contributions are 91% 
and 9% respectively. The same analysis was performed 
on flatness too (see Table 2) and the unique significant 
contribution is that of machine tool volumetric error 
equal to 93%, the locator configuration has an influ-
ence of 3% and the datum flatness of 4%.

Fig. 5 Simulated milled surface (errors amplified 30 times)

Conclusions

This work presents kinematic modelling to simu-
late the effect of three sources of deviations, i.e. loca-
tors, datum surfaces contacting locators and machine 
tool, on the geometrical error of a surface manufactu-
red by face milling. Four steps were implemented: (1) 
evaluate how the deviations from nominal of locators‘ 
positions affect the position and orientation of work-
piece reference frame; (2) estimate how the form de-
viations of datum surface contacting the locators 
affect the position and orientation of workpiece refe-
rence frame; (3) define the machine tool volumetric 
error; (4) combine all the contributions. 

The proposed model is based on robotic concepts 
of kinematic chains whose correctness was demon-
strated by the literature. The proposed model consi-
ders in a simple and effective model three contributi-
ons to geometric deviations of a milled surface, thus 
overcoming the state of the art. 

Fig. 6 Results for the first (Case 1) and second (Case 2) con-
figuration of the locators



October 2021, Vol. 21, No. 5 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

indexed on: http://www.scopus.com 581

It was used on two parts that are characterized by 
two different configurations of the locators. From the 
results, it is clear how the proposed model easily all-
ows estimating the deviation of the milled surface due 
to the combined effect of three error sources. The use 

of the proposed model allowed to save time, energy 
and material involved by an experimental approach.

Future works aim to define the values of the para-
meters connected with the three sources of deviations 
affecting a milled surface through experimental tests.

Tab. 1 ANOVA of angle results

Possible deviations DF SS MS Contribution F p-value

Locators 1 0.0002897 0.0006048 9% 1167.30 0.000

Machine tool 1 0.0000012 0.0000012 0% 2.41 0.129

Datum 1 0.0030479 0.0027370 91% 5283.05 0.000

Locators + Datum 1 0.0000030 0.0000020 0% 3.83 0.058

Error 37 0.0000192 0.0000005

Total 41 0.0033611

Tab. 2 ANOVA of flatness results

Possible dviations DF SS MS Contribution F p-value

Locators 1 0.002336 0.0000000 3% 3.53 0.068

Machine tool 1 0.078735 0.065613 93% 66693208.24 0.000

Datum 1 0.003288 0.0000000 4% 3.53 0.068

Datum + machine tool 1 0.0000000 0.0000000 0% 3.53 0.068

Locators + machine 
tool

1 0.0000000 0.0000000 0% 3.53 0.068

Error 36 0.0000000 0.0000000

Total 41 0.084359
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