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In order to improve the surface machining quality of slow tool servo (STS) turning in complex surfaces, 
the optimal method of tool path generation (TPG) was studied. Taking into consideration the problem 
of large discrete errors and interpolation errors in TPG, equal height discretization method and interpo-
lation algorithm for non-uniform nodes were proposd and the acceleration continuous condition was 
introduced. Simulation results showed that equal height discretization method could reduce the discrete 
error by more than 70%. The interpolation errors could be reduced to two orders of magnitude by trans-
forming segment cubic Hermite interpolation into segment cubic spline interpolation. Finally, the pro-
cessing experiments were performed. The results showed that the form error PV value for the workpiece 
of the toric surface obtained by equal height discretization method and non-uniformity processing and 
segment cubic spline interpolation reached 0.002mm. The PV value of the sinusoidal array surface was 
about 0.009mm, and its surface roughness value was 0.064μm. The results proved this method can effecti-
vely reduce the discrete errors and interpolation errors, as well as improve the surface machining quality. 

Keywords: Tool path, Equal height discretization, Hermite interpolation, Non-uniformity processing, Spline in-
terpolation 

 Introduction 

Complicated curved surfaces (such as aspherical 
surfaces or free-form surfaces) can be used for certain 
types of optical components to make them have better 
optical characteristics in the optical system, obtain 
high-quality images, optimize system structure, and 
improve and expand system functions [1-3]. With the 
increasing application of complex curved surfaces in 
aerospace, astronomy and mechanical fields, ultra-pre-
cision machining of complex curved surfaces has be-
come an important factor determining its develop-
ment [4-8]. As an ultra-precision machining method, 
slow tool servo (STS) turning has been widely used in 
the machining of many different types of complex cur-
ved surfaces in recent years due to its high surface ma-
chining accuracy and machining efficiency. 

In spite of the fact that a lot of research has been 
carried out for the STS turning of complex surfaces, 
the tool path generation (TPG) technique is still the 
key technology because it has a direct impact on the 
surface accuracy [9]. The overall scheme of TPG for 
STS turning of complex surfaces is as follows: First, 
the complex surfaces expressed by equation or other 
ways is discretized into cutting contact points (CCPs). 
Afterwards, discrete CCPs are translated into discrete 
cutting location points (CLPs) through tool geometry 
compensation. Then, trajectory interpolation for 
CLPs is completed. Finally, the verified 

NC(Numerical Control) program is exported for ma-
chining. The main routes of the TPG can be summa-
rized as CLPs generation and CLPs trajectory interpo-
lation. CLPs generation includes CCPs discretization 
and tool geometry compensation. Reasonable CCPs 
discretization method is the basis of TPG. For three 
axes turning of complex surfaces, spiral tool path is 
the most typical method [10]. 

At present, the equal angle discretization method 
and the equal arc length discretization method are the 
two main methods of CCPs discretization [11-16]. 
However, these two methods do not consider the 
height difference of every two adjacent CCPs, so the 
discrete error is relatively large. Nowadays, B-spline 
interpolation [17] and Non-Uniform Rational B-Spli-
nes (NURBS) interpolation [12,18] are commonly 
used for CLPs interpolation, but the interpolation er-
ror is relatively large. Guan [10] and Wang et al. [9] 
proposed Hermite interpolation method, but this me-
thod cannot guarantee that the interpolation path is 
two order continuous, that is, the acceleration is dis-
continuous, which results in the interpolation path not 
being smooth enough. At the same time, the choice of 
interpolation node also affects the interpolation error 
to a greater extent, but most interpolation methods do 
not take this problem into consideration. 

In view of the above-mentioned problems in the 
process of TPG, a systematical method of TPG for 
STS turning of complex surfaces was proposed. This 
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method includes the generation of CCPs, selection of 
interpolation nodes and calculation of two order con-
tinuous interpolation. In this method, the height diffe-
rence of every two adjacent CCPs was taken into con-
sideration, the interpolation algorithm for non-uni-
form nodes, and the conversion method from Her-
mite interpolation to Spline interpolation were given. 
This ensured the two-order continuity of the interpo-
lation path. 

 Generation of cutting location points 

2.1 CCPs discretization 

Figure 1 shows the 3D model of a tool cutting the 
surface of a workpiece in STS turning. The coordinate 
system on the upper left corner in Figure 5 represents 
lathe coordinate system. The processing of complex 
curved surfaces using STS turning refers to the relative 
movement of the cutting edge of the diamond tool 
and the surface of the workpiece, so as to achieve the 
removal of excess material on the surface of the work-
piece. The CCPs are the position points on the work-
piece’s surface, which get into contact with the dia-
mond tool, point P, as shown in Figure 1. Discretiza-
tion must be performed to obtain CCPs. 

 

Fig. 1 3D model of tool cutting workpiece’s surface in STS 
turning 

Equal parameter discretization 

At present, equal parameter discretization method 
is mostly adopted to discretize CCPs, and this method 
mainly includes equal angle discretization method and 
equal arc length discretization method [9-10]. The 
equal angle discretization method controls the gener-
ation of CCPs through the discrete angle (the angle 
between two adjacent CCPs connected to the center 

point in the plane XOY) !". Its advantages are sim-
plicity in calculation and ease of evaluation. However, 
the trajectory points that are closer to the central re-
gion are too dense, while the points of the outer tra-
jectory are relatively sparse. As such, when the diame-
ter of workpiece is larger, the discrete error will be 
larger in the outer of the workpiece. The equal arc 
length discretization method controls the generation 
of CCPs through the discrete arc length (the arc length 

between two adjacent CCPs in the plane XOY) !#. In 
equal arc length discretization method, the CCPs near 
the center of the workpiece become very sparse and 
the machining trajectory’s curvature in the center of 
the workpiece becomes larger, which causes the in-
crease in the discrete error. In addition, Chen Xu et al. 
[9-10] proposed the comprehensive discrete method, 
but the type of the complex surface was not taken into 
consideration in these three methods. Using the same 
discretization methods for different types of complex 
surfaces' CCPs generation is unsuitable, and the dis-
crete error is unpredictable and difficult to control.

Equal height discretization 

 

Fig. 2 Schematic diagram of the equal height discretization 
method 

 
In order to reduce the discrete error and improve 

the machining accuracy, equal height discretization 
method is proposed in this paper. Equal height discre-
tization method not only integrates the advantages of 
equal parameter discretization methods, but also takes 
the types of complex surfaces into consideration. It 
generates CCPs by controlling the height difference of 
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the two adjacent CCPs. Therefore, the height diffe-
rence of every two adjacent CCPs will be limited to a 
fixed range. This method does not control the genera-
tion of CCPs by controlling a single discrete angle or 
discrete arc length. Instead, it generates all CCPs by 
controlling the height difference between the CCP 
that has been sought and the next CCP to be sought. 
The height difference between every two adjacent 
CCPs is limited to a fixed range by using this method. 

Figure 2 shows a schematic diagram of the equal 
height discretization method for the generation of 

CCPs. The "entry point" is �  in the outermost circle 

of the workpiece. Where, �"(#", $", %") represents the 
coordinate value of the CCPs in the cylindrical coor-

dinate system, #" is the distance from the CCP �" to 

the workpiece center O, $" is the angle from the CCP 

�  to the CCP �" , and %" is the vector height of the 

CCP �" . &' and &$ are the same discrete arc length 
and discrete angle as defined above, which are called 
allowable discrete arc length and allowable discrete an-

gle respectively here. &*+ is the allowable discrete 
height difference between two adjacent CCPs. First, 

the coordinate value of the CCP  �"-  is calculated 
using the equal arc length discretization method. 

If |%"- − %"| Δ*+, the coordinate value of the CCP 

�"-  is calculated by controlling the difference 
between the Z values of two adjacent CCPs. If 

|%"- − %"| ≤ Δ*+ , then judge whether |$"- −

$"| is greater than Δ$. If |$"- − $"| ≤ Δ$, then the 

next CCP is calculated. If |$"- − $"| Δ$, the coor-

dinate value of the CCP �"-  is calculated using the 

equal angle discretization method. If |%"- − %"|

Δ*+, the coordinate value of the CCP �"-  is calcu-
lated by controlling the difference between the Z va-
lues of two adjacent CCPs. Finally, it is judged whether 

#"-  is less than 0. If #"- 0, the cycle algorithm 
ends, and all the coordinate values of the CCPs calcu-
lated are outputted. 

The equal height discretization method calculates 

the coordinate value of the CCP �"-  by controlling 
the difference between the Z values of the adjacent 
CCPs by halving the angle of the adjacent CCPs. Fi-
gure 3 illustrates the schematic diagram of the method 
halving the angle of adjacent CCPs. Where, 

�"(#", $", %") is the coordinate value of the CCP that 

has been calculated, and �"- (#"- , $"- , %"- ) is the 
coordinate value of the CCP calculated by the equal 

parameter discrete method. Here, |%"- − %"| Δ*+, 

the value %"-  needs to be controlled. First, the an-

gle  $" of the CCP  �"  and the angle  $"-  of the 

CCP  �"-  are halved and then re-assigned to  $"- . 

Then, the coordinate value of the new CCP �"-  is 
calculated using formula (1). Finally, it is judged 

whether |%"- − %"| is greater than  Δ*+ . If |%"- −

%"| Δ*+ , then the angle $" of the CCP �"  and the 

angle $"-  of the CCP �"-  are halved and then re-as-

signed to $"-  again.�"- (#"- , $"- , %"- ) is output-
ted for the next step calculation of the equal height 
discrete method until the end of the loop algorithm.  

 

Fig. 3 The schematic diagram of the method halving the angle 
of adjacent CCPs 
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Where, ( !, "!, #!) is the coordinate value of the 

CCP $!, % is the radius of the workpiece, and '* is the 

feed per revolution of the X axis. 
The equal height discretization method is essen-

tially a combination of the above-mentioned methods. 

If the +-. value is larger, then the method is a com-
prehensive discretization method composed of equal 
angle discretization and equal arc discretization 

method. If the +-. value is smaller, then the method 
will not use equal angle discretization and equal arc 
discretization method, but obtains the coordinate val-
ues of the CCPs by controlling the difference between 
the Z values of two adjacent CCPs. 

Through the equal height discretization method, 
most of the CCPs in the outer ring of the workpiece 
were obtained by the equal arc length discretization 
method, and most of the CCPs in the inner ring were 
obtained by the equal angle discretization method. 
The remaining CCPs at the positions where the curva-
ture is larger on the surface were obtained by con-
trolling the difference between the Z values of two ad-
jacent CCPs. Therefore, this method retains the adva-
ntages of the two equal parameter discretization met-
hods, and takes into account the surface shape of 
complex curved surfaces, and can control the discrete 
error within a small range. 

As shown in Figure 4(a) and 4(b), the CCPs of a 
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sinusoidal array surface were discretized by equal 
height discretization method. Equal height discre-

tization limits the height increment between two adja-
cent CCPs where the curvature of the surface was 
large, thus the discrete error was reduced. 

 

Fig. 4 Schematic diagram of equal height discretization for sinusoidal array surface (a) Schematic diagram of XY plane, (b) Sche-
matic diagram of 3D space

2.2 Cutting tools geometry compensation 

In the actual cutting process, the contact point 
between the tool nose and the workpiece is not a fixed 
point on the tool nose, but may be a series of con-
stantly changing points on the arc of tool nose. The-
refore, it is necessary to specify a fixed point on the 
tool to determine the position of the tool during the 
cutting process. This point is called the cutting loca-
tion point (CLP). Owing to the complexity of the 
complex surface and the use of diamond turning tool 
in the experiment with an arc of tool nose, the contact 
point between the tool nose and the machined surface 
is inconsistent at different positions on the surface. 
The movement of the tool cannot be controlled sim-
ply by the coordinates of the CCPs. The discrete CCPs 
must be converted into discrete CLPs through tool ge-
ometry compensation. In this paper, the rake angle of 
the tool is 0°, back angle is 15°, and the arc radius of 
tool nose is 0.5 mm, so the tool geometry compens-
ation is tool radius compensation. The tool shape 
compensation algorithm used in this paper is the Z-
direction compensation algorithm proposed by Wang 
[9] and Chen et al. [16]. This algorithm can ensure the 
dynamic performance of the X axis and improve the 
machining accuracy. 

 Trajectory interpolation of cutting loca-
tion points 

3.1 Processing of interpolation nodes 

The processing trajectory interpolation is required 
after obtaining the discrete CLPs. The discrete CLPs 
were the interpolation nodes. In this experimental 

platform, the integrated multi-axis controller 400 
(IMAC400) can be used to complete the processing 
path interpolation. The PVT (Position-velocity-time) 
interpolation mode supported by IMAC is used for 
the interpolation of the machining trajectory [9]. The 
parameters required for this mode are the position of 
the CLP, the velocity at the CLP, and the time interval 
between two adjacent points. The mathematical es-
sence of PVT mode is segment cubic Hermite poly-
nomial interpolation [19]. This mode can generate a 
unique three order curve according to the given para-
meters, so it can realize precise control of the motion. 

Uniform node interpolation means that the inter-
polation nodes are arranged uniformly in the X di-
rection, while non-uniform node interpolation means 
that the interpolation nodes are arranged unevenly in 
the X direction. Since the curvatures of different po-
sitions on the tool path curve are different, if the same 
uniform node interpolations are used at different po-
sitions, the interpolation error will be larger at the po-
sition with larger curvature. 

In order to reduce the interpolation error, a new 
interpolation algorithm referred to as non-uniform 
node was put forward in this paper. This method 
achieves the purpose of non-uniformity processing by 
increasing the interpolation nodes at the position 
where the curvature of the trajectory curve is larger 
and reducing the interpolation nodes at the position 
where the curvature of the trajectory curve is smaller, 
thereby reducing the interpolation error. The interpo-
lation error is larger where the curvature of the curve 
is larger because of the shape preserving characteris-
tics of the Hermite interpolation curve [16]. However, 
the interpolation nodes were generally uniform, so the 
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interpolation error of PVT was influenced by the cur-
vature of the curve, whereby the larger the curvature, 
the larger the interpolation error [20]. Therefore, se-
lection of more interpolation nodes in the large curva-
ture of the curve is an effective method for reducing 
interpolation error. Figure 5 shows the comparison re-
sult of using uniform nodes and non-uniform nodes 
to interpolate the sinusoidal curve. Figure 5(a) shows 
the uniform nodes interpolation and the non-uniform 

nodes interpolation of the sinusoidal curve. It can be 
seen that non-uniform nodes interpolation curve with 
ten interpolation nodes was closer to the true curve. 
Figure 5(b) shows the interpolation error of the uni-
form nodes interpolation and the non-uniform nodes 
interpolation of the sinusoidal curve. It can be seen 
that non-uniform nodes interpolation can control the 
error distribution and reduce the maximum interpola-
tion error by about 70%.  

 

Fig. 5 Comparison of uniform nodes interpolation and non-uniform nodes interpolation (a) Comparison of sinusoidal interpolation 
curve, (b) Comparison of sinusoidal curve interpolation error 

 
In addition, the interpolation error can be further 

reduced by densifying the interpolation nodes. Figure 
6 shows the method of densification of interpolation 
nodes. 

 

Fig. 6 The method of densification of interpolation nodes 
 

Where � !"  is the maximum curvature to judge 

whether the nodes start to increase. $%  and $%&' are 
the CCPs discretized by equal height discretization 

method, and N is the total number of CCPs. 

3.2 Calculation of interpolation nodes velocity 

The key step of the PVT interpolation mode is to 
calculate the velocity of the CLPs, which mainly con-
sists of velocity calculation of the interpolation nodes. 
Segment cubic Hermite polynomial interpolation can 
guarantee that the velocity of each interpolation node 
is continuous, but it cannot guarantee that the accele-
ration of each interpolation node is continuous. Seg-
ment cubic spline interpolation, however, can guaran-
tee the velocity and acceleration are both continuous, 
simultaneously [9]. Figure 7 shows the difference in 
the interpolation of sinusoidal curve using segment 
cubic Hermite interpolation and segment cubic spline 
interpolation. It can be seen that the segment cubic 
spline interpolation curve is smoother with the same 
interpolation nodes. At the position of large curvature, 
the interpolation error of the segment cubic Hermite 
interpolation is larger than that of the segment cubic 
spline interpolation. 

 

Fig. 7 Comparison of the interpolation results of two interpo-
lation methods on sinusoidal curve 
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The difference between the segment cubic spline 
interpolation and the segment cubic Hermite interpo-
lation lies in the velocity calculation of the interpola-

tion nodes. The segment cubic interpolation polyno-
mial expressed by the interpolation basis function can 
be expressed by Equation (2) [21].

 ( )

1 1 1 1( ) ( ) ( ) ' ( ) ' ( ) 0,1,..., 1k

k k k k k k k kI x f x f x f x f x k na a b b+ + + += + + + = -   (2)

Where, �( )(!) is the cubic interpolation polyno-

mial on the interval [! ,! "# ], $  and $ ′ are the 
function value and the first derivative value of the in-

terpolation nodes, respectively, and !', !#,⋅⋅⋅, !+ are 

the interpolation nodes. - (!) and . (!) are the in-
terpolation basis functions, which can be expressed as 
shown in Equation (3): 
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Where, / = 0 + 1 , when 3 = 0 , / = 0 , when 

3 = 0 + 1. 
For segment cubic Hermite interpolation, the in-

terpolation polynomial expressed in Equation (2) ne-
eds to satisfy the condition expressed by formula (4) 
to ensure continuous velocity. 

 ( ) , '( ) ', 0,1,..., 1k k k kI x f I x f k n= = = -   (4) 

For segment cubic spline interpolation, the inter-
polation polynomial expressed in Equation (2) needs 
to satisfy the condition expressed in Equation (5) to 
ensure continuous velocity and acceleration.

 ( ) , '( ) ', "( ) ", 0,1,..., 1k k k k k kI x f I x f I x f k n= = = = -   (5)

Therefore, the condition expressed in Equation (5) 
can guarantee that the acceleration of each interpola-
tion node is continuous, and the corresponding inter-
polation functions can be obtained by the method of 

undetermined coefficients with �′(! ) = 4  or 

�"(! ) = 6 .  

When the first order coefficient �′(! ) = 4  is an 

undetermined coefficient, �(!), �′(!) and �"(!) can 

be calculated by combining condition (4) and Equa-
tion (2). Equation (6) represents the acceleration for-

mula, where � =  �!" −  � . Combined with the 
condition of second order derivatives continuity 

$"( � + 0) = $"( � − 0), the basic equations of tri-
angle rotary method expressed in Equation (7) can be 
calculated [11].

1 1 1 12 3 2 3 2 2
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When the second order coefficient $"( �) =
&�  is an undetermined coefficient, $( )  and $′( ) 
can be calculated by combining condition (5) and 
Equation (2). Equation (8) represents the velocity for-
mula. Combined with the condition of derivatives 

continuity $′( � + 0) = $′( � − 0), the basic equa-
tions of triangle bending moment method (9) can be 
calculated.  
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Equations (7) and (9) are both undetermined 
equations, so the undetermined coefficients should be 
calculated through appropriate boundary conditions 
(such as natural boundary conditions) [22]. The seg-
ment cubic spline interpolation polynomials and the 
velocity of interpolation nodes are then obtained. The 
second order continuity of the interpolation nodes can 
be ensured by transforming the segment cubic Her-
mite polynomial interpolation into segment cubic 
spline interpolation using Equations (10). The inter-
polation error can be further reduced by non-unifor-
mization of the interpolation nodes. Figure 8 shows 

the interpolation results and the interpolation error 
distribution of sinusoidal curve by using segment cu-
bic Hermite interpolation and segment cubic spline in-
terpolation with the same non-uniform interpolation 
nodes. It can be seen that the interpolation curves of 
the two methods are approximately the same from Fi-
gure 8(a). It can also be seen that the interpolation er-
ror decreased by about 90% by transforming segment 
cubic Hermite interpolation into segment cubic spline 
interpolation in Figure 8(b). 
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Fig. 8 Comparison of two interpolation methods under non-uniformity processing (a) Comparison of sinusoidal interpolation curve, 
(b) Comparison of interpolation error of sinusoidal curve 

 

 Simulation analysis 

After discretization of CCPs and trajectory inter-
polation of the CLPs, the STS turning of the complex 
surface can be realized. The toric surface and sinuso-
idal array surface were chosen as the simulation analy-
sis case for the verification of tool path generation. 

 Toric surface 

The toric surface is a non-rotationally symmetrical 

surface. Two different diopters are formed due to its 
different steepness in two mutually perpendicular di-
rections. Based on this feature, it is widely used in the 
correction of eye astigmatism. Its mathematical ex-
pression is shown in Equation (14) [23]: 

 2 2 2 2( )z R a R a y x= + - + - -  (10) 

The related parameters of this simulation experi-
ment are described in the table below.

Tab. 1 Simulation parameters of tool path planning of the toric surface 

Name of parameters 
Parameter’s 

value 
Name of parameters 

Parameter’s 
value 

Radius of orthogonal arc � (mm) 140 Radius of workpiece ! (mm) 20 

Radius of basic arc " (mm) 100 Discretization height ∆$(mm) 0.04 

Feed velocity "% (mm/r) 0.5 Discretization arc length &'(mm) 1 

Tool radius !( (mm) 0.2 Discretization angle ∆) (°) 5 

 
Figure 9 shows the designed surface of the toric 

surface and the distribution of the CCPs obtained by 
equal height discretization method. 

 

Fig. 9 The designed surface of the toric surface and the distri-
bution of the CCPs obtained by equal height discretization me-

thod 
 
The CCPs obtained by the three discretization me-

thods described above were interpolated by the seg-
ment cubic spline interpolation method. The diffe-
rence of the Z values between the interpolation point 
and the theoretical point is called the discrete error. 

Figure 10 shows the distribution of the height diffe-
rence ∆Z of every two adjacent CCPs obtained by the 
three discretization methods above, and the corre-
sponding discrete errors of the three discretization 
methods. 

It can be seen that the distribution of CCPs discre-
tized by both equal angle and equal arc length discre-
tization method were non-uniform in Z direction 
from Figure 10(a) and 10(c). For equal angle discre-
tization method, the difference of the Z values (∆Z) 
of the adjacent CCPs of the outer ring was larger since 
the CCPs of the outer ring were sparse relative to the 
inner ring, which lead to a larger discrete error in the 
outer ring, as shown in Figure 10(b). For equal arc len-
gth discretization method, the difference of the Z va-
lues (∆Z) of the adjacent CCPs of the inner ring was 
larger since the CCPs of the inner ring were relatively 
sparse, which lead to a larger discrete error in the inner 
ring, as shown in Figure 10(d). 

From Figure 10(e) and 10(f), it is evident that for 
equal height discretization method, the distribution of 
CCPs was uniform in Z direction and the values of ∆Z 
were limited to a fixed small range and consequently, 
the discrete error was reduced. Since the distribution 
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of CCPs in the Z direction was relatively uniform, the 
velocity and acceleration of the Z axis varied within a 
small range. This in turn reduced the vibration of the 
machining process and improved the machining ac-
curacy. It can be seen that the order of the maximum 
discretization error of the three discretization met-

hods is: equal height discretization method<equal an-
gle discretization method<equal arc length discre-
tization method from Figure 10(b), (d) and (f). Com-
pared with the equal angle discretization method, the 
equal height discretization method can reduce the 
discretization error by about 70%. 

 

Fig. 10 The distribution of ∆Z of every two adjacent CCPs obtained by the three discretization methods and the corresponding 
discrete error, (a) The distribution of ∆Z by equal angle discretization, (b) The discrete error of equal angle discretization, (c) The 

distribution of ∆Z by equal arc length discretization, (d) The discrete error of equal arc length discretization, (e) The distribution of 
∆Z by equal height discretization, (f) The discrete error of equal height discretization 

 
Segment cubic Hermite interpolation was used to 

interpolate the CLPs after the tool geometry compen-
sation for the analysis of PVT interpolation error. The 
difference of the Z values between the interpolation 
points and the theoretical points was called the inter-
polation error. Figures 11(a) and 11(b) show the PVT 
interpolation error distributions obtained by using 
uniform nodes segment cubic Hermite interpolation 
and non-uniform nodes segment cubic Hermite inter-
polation. It can be seen that the interpolation error 
was reduced by about 70% by using non-uniform 

node interpolation under the same conditions. Figure 
12 represents the interpolation error of PVT by using 
the triangle rotary method to convert the segment cu-
bic Hermite interpolation into the segment cubic 
spline interpolation. Under the natural boundary con-
ditions, the velocity of interpolation points calculated 
by the triangle rotary method and the triangle bending 
moment method was basically the same, and so was 
the interpolation error. However, both were about 
two orders of magnitude smaller than the error of seg-
ment cubic Hermite interpolation. 
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Fig. 11 The interpolation error of uniform nodes segment cubic Hermite interpolation and non-uniform nodes segment cubic, Her-
mite interpolation, (a) The interpolation error of uniform nodes segment cubic Hermite interpolation, (b) The interpolation error of 

non-uniform nodes segment cubic Hermite interpolation

 

Fig. 12 The interpolation error of non-uniform nodes seg-

ment cubic spline interpolation 

4.2 Sinusoidal array surface 

The array surface means the repetition of the same 
or similar surface type, and is widely used in laser wel-
ding, electronic components and lighting systems [24]. 
The one-time molding process of the array surface can 
improve the installation accuracy and production effi-
ciency, and avoid the shortcomings of the non-one-
time molding process. The sinusoidal array surface is 
a common array surface, and its mathematical expres-
sion is given by Equation (11) [16]: 

 
2 2

sin( )sin( )
x y

z A
p p
w w

=   (11) 

The related parameters of this simulation experi-
ment are described in the table below.

Tab. 2 Simulation parameters of tool path planning of the sinusoidal array surface 

Name of parameters Parameter’s value Name of parameters Parameter’s value 

Amplitude �(mm) 1 Radius of workpiece  (mm) 30 

Wave length !(mm) 30 Discretization height ∆#(mm) 0.1 

Feed velocity $% (mm/r) 0.5 Discretization arc length '((mm) 1 

Tool radius  ) (mm) 0.2 Discretization angle ∆* (°) 3 

 

 
Fig. 13 The designed surface of the sinusoidal array surface 
and the distribution of the CCPs obtained by equal height  

discretization method 

Figure 13 shows the designed surface of the sinu-
soidal array surface and the distribution of the CCPs 
obtained by equal height discretization method. 

Figure 14 shows the distribution of the height di-
fference ∆Z of every two adjacent CCPs obtained by 
the three discretization methods above, and the corre-
sponding discrete errors of the three discretization 
methods. By comparison, it was found that the equal 
height discretization method reduced the discrete er-
ror and was superior to the other two discretization 
methods. This was the same case for the toric surface. 
Compared with the equal angle discretization method, 
the equal height discretization method can reduce the 
discretization error by about 80%. 
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Fig. 14 The distribution of ∆Z of every two adjacent CCPs obtained by the three discretization methods and the corresponding 
discrete error, (a) The distribution of ∆Z by equal angle discretization, (b) The discrete error of equal angle discretization, (c) The 

distribution of ∆Z by equal arc length discretization, (d) The discrete error of equal arc length discretization, (e) The distribution of 
∆Z by equal height discretization, (f) The discrete error of equal height discretization 

 

Fig. 15 The interpolation error of uniform nodes segment cubic Hermite interpolation and non-uniform nodes segment cubic, Her-
mite interpolation, (a) The interpolation error of uniform nodes segment cubic Hermite interpolation, (b) The interpolation error of 

non-uniform nodes segment cubic Hermite interpolation
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Figure 15 shows the PVT interpolation error dis-
tributions obtained by using uniform nodes segment 
cubic Hermite interpolation and non-uniform nodes 
segment cubic Hermite interpolation. It can be seen 
that the interpolation error was reduced by about 30% 
by using non-uniform nodes interpolation under the 
same conditions. Figure 16 represents the interpola-
tion error of PVT by using the triangle rotary method 
to convert the segment cubic Hermite interpolation 
into the segment cubic spline interpolation. Similar to 
the toric surface, the maximum interpolation error was 
about two orders of magnitude smaller than the seg-
ment cubic Hermite interpolation error under the na-
tural boundary conditions. 

 

Fig. 16 The interpolation error of non-uniform nodes segment 
cubic spline interpolation 

 Processing experiment 

According to the theoretical analysis and simula-
tion analysis above, the simulation results were veri-
fied by experiments. Firstly, programs suitable for STS 
turning and can also automatically generate machining 
code (NC code) were written in MATLAB using the 
algorithm above. Then, the processing of the toric sur-
face and the sinusoidal array surface was completed on 

the experimental device developed by our laboratory. 
Figure 17 shows the experimental platform of STS 
turning used in the experiment. The material of work-
pieces was PMMA (polymethyl methacrylate), the feed 
speed was 0.05mm/r, and other processing parame-
ters were the same as the simulation parameters. 

 

Fig. 17 The experimental platform of STS turning 
 
Three discrete methods and uniform node seg-

mentation cubic Hermite interpolation were used to 
complete the processing of toric surface. Figure 18 
shows the machined workpieces of toric surface. In 
order to evaluate the surface smoothness of the ma-
chined workpieces, the surface roughness of the work-
pieces was measured by the JB-4C contact surface rou-
ghness measuring instrument. Due to the different 
discrete methods, the discrete errors were also diffe-
rent. According to the theoretical analysis above, the 
inner and outer rings of the workpiece were measured 
and compared. Figure 19 shows the measurement re-
sult of the surface roughness of the workpieces. 

 

Fig. 18 The machined workpieces of the toric surface, (a) Workpiece obtained by equal angle discretization method, (b) Workpiece 
obtained by equal arc length discretization method, (c) Workpiece obtained by equal height discretization method 
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Fig. 19 The measurement result of the surface roughness of the workpieces 
(a) The surface roughness value of the outer ring obtained by the equal angle discretization method,  
(b) The surface roughness value of the inner ring obtained by the equal angle discretization method, 

(c) The surface roughness value of the outer ring obtained by the equal arc length discretization method,  
(d) The surface roughness value of the inner ring obtained by the equal arc length discretization method, 

(e) The surface roughness value of the outer ring obtained by the equal height discretization method,  
(f) The surface roughness value of the inner ring obtained by the equal height discretization method 

 
From Figure 19, it can be seen that the surface rou-

ghness value of the outer ring of the workpiece pro-
cessed by the equal angle discretization method was 
0.123μm, and the surface roughness value of the inner 
ring was 0.097μm. Therefore, the surface roughness 
value of the outer ring was greater than that of the in-
ner ring. The main reason is that the discrete points of 
the outer ring are too sparse, resulting in a larger 
discrete error. The surface roughness value of the ou-
ter ring of the workpiece processed by the equal arc 
length discretization method was 0.098μm, and the 
surface roughness value of the inner ring was 
0.128μm. Therefore, the surface roughness value of 
the inner ring was greater than that of the outer ring. 
The main reason is that the discrete points of the inner 
ring are too sparse, resulting in a larger discrete error. 
The surface roughness value of the outer ring of the 

workpiece processed by the equal height discretization 
method was 0.086μm, and the surface roughness value 
of the inner ring was 0.081μm. The surface roughness 
values of the inner ring and the outer ring were basi-
cally the same, and both were smaller than the two 
equal parameter discrete methods. It indicates that the 
equal height discretization method can effectively re-
duce the discrete error and improve the processing qu-
ality of the workpiece surface. 

Figure 20 shows the workpieces of toric surface 
processed by different interpolation methods using 
equal height discretization methods. In order to eva-
luate the form accuracy of the machined workpieces, 
the surfaces machined were measured by MQ686 
coordinate measuring machine. After processing the 
data, the form error distribution was obtained, as 
shown in Figure 21. 
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Fig. 20 The workpieces of toric surface processed by different interpolation methods using equal height discretization methods, (a) 
Workpiece processed by non-uniform node and segment cubic Hermite interpolation, (b) Workpiece processed by non-uniform node 

and segment cubic spline interpolation 

 

Fig. 21 The form error distribution of the toric surfaces 
(a) The form error of the workpiece obtained by the uniform node and segment cubic Hermite interpolation,  

(b) The form error of the workpiece obtained by the non-uniform node and segment cubic Hermite interpolation, 
(c) The form error of the workpiece obtained by the non-uniform node and segment cubic spline interpolation 

 
From Figure 21, it can be seen that the PV (Peak-

to-valley) value of the form error of the workpiece ob-
tained by the uniform node and segment cubic Her-
mite interpolation was about 0.05mm, the PV value of 
the form error of the workpiece obtained by the non-
uniform node and segment cubic Hermite interpola-
tion was about 0.01mm, and the PV value of the form 
error of the workpiece obtained by the non-uniform 
node and segment cubic spline interpolation was 
about 0.002mm. Comparing Figure 21(a) and Figure 
21(b), it was observed that the interpolation error 
could be effectively reduced by the non-unifor-
mization processing, thereby improving the surface 
accuracy. Comparing Figure 21(b) and Figure 21(c), it 
was observed that the interpolation error could also be 
effectively reduced by using the triangle rotary method 
to convert the segment cubic Hermite interpolation to 
the segment cubic spline interpolation. As a result, the 
surface accuracy and the processing quality was im-
proved. 

 

Fig. 22 The machined workpiece of the sinusoidal array sur-
face 
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The sinusoidal array surface was machined by 
using the equal height discretization method and the 
non-uniform node segment cubic spline interpolation.
Figure 22 shows the machined workpiece of the sinu-
soidal array surface. Figure 23 shows the form error 
distribution. It can be seen that the PV value of the 
form error was about 0.009mm. Figure 24 shows the 
measurement result of its surface roughness. It can be 
seen that the value of surface roughness was 0.064μm. 
The case study indicated that the tool path generation 
method proposed in this paper could be used to fab-
ricate the complex surfaces by STS turning and im-
prove the processing quality. 

 

Fig. 23 The form error distribution of the sinusoidal array 
surface 

 

Fig. 24 The measurement result of the surface roughness of 
the sinusoidal array surface 

 Conclusions 

The method of the tool path generation for the 
STS turning of complex surfaces was studied systema-
tically in this paper. Based on the research results, the 
following conclusions can be drawn: 

(1) For the STS turning of complex surfaces, an 
equal height discretization method was proposed. 
This method limited the height difference between 
two adjacent CCPs, thereby the discrete error was re-
duced, which could reduce the discrete error by more 
than 70%. In addition, the distribution of the CCPs in 

the Z direction obtained by the equal height discre-
tization method was relatively uniform. As a result, the 
speed and acceleration of the Z axis varied in a small 
range, and this improved the dynamic performance 
and machining accuracy. 

(2) A new non-uniform node interpolation algo-
rithm was proposed. This method achieved the pur-
pose of non-uniformity processing by increasing the 
interpolation nodes at the position where the curva-
ture of the trajectory curve is larger thereby reducing 
the interpolation error, and could reduce the ma-
ximum interpolation error by about 70%. In addition, 
the interpolation error was also reduced by the densi-
fication of the interpolation nodes. Furthermore, the 
simulation analysis results showed that the interpola-
tion error was reduced by two orders of magnitude by 
transforming segment cubic Hermite interpolation 
into segment cubic spline interpolation. 

(3) With processing experimental research of both 
sinusoidal array surface and toric surface, the results 
showed that the value of surface roughness of the to-
ric surface processed by the equal height discretization 
method is significantly less than that of the equal pa-
rameter discretization method. As such, this method 
could effectively reduce the discrete error and im-
prove the processing quality of the workpiece’s sur-
face. The PV value of the form error of the workpiece 
of the toric surface obtained by non-uniformity pro-
cessing and segment cubic Spline interpolation rea-
ched 0.002mm, so this method could reduce the inter-
polation error and improve the surface accuracy 
effectively. The PV value of the form error of the 
workpiece of the sinusoidal array surface obtained by 
non-uniformity processing and segment cubic Spline 
interpolation was about 0.009mm, and the value of 
surface roughness was 0.064μm. Therefore, the tool 
path generation method proposed in this paper can be 
applied to the STS turning to process complex curved 
surfaces and can improve the quality of workpiece 
processing significantly. 
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