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The paper deals with dynamic in-plane simulation analysis of a motorcycle suspension. The motorcycle᾿s 
mechanical model is considered as a visco-elastically suspended rigid body. Two types of the kinematic 
excitation are considered ‒ a deterministic „hat“ shaped bump and stochastically uneven road characte-
rized by its power spectral density. The simulation results for both the deterministic bump and stochas-
tically uneven road show that significant reduction of the root mean square value of the motorcycle body 
centroid acceleration (comfort criterion) can be achieved by placing the lower end point of the rare 
spring-damper module closer to the beginning of the swinging arm and also by increasing deviation (tilt) 
of the spring-damper module from the vertical. The maximum improvement in the root mean square 
value of the motorcycle body centroid acceleration is 51.7 % for the deterministic „hat“ shaped bump and 
37.4 % for the stochastically uneven road. The method presented in the paper can be employed in design 
of both touring motorcycles, which are characterized by higher requirements of comfort, and off-road 
motorcycles where protection from impacts generated by bumps is important.  
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 Introduction 

A motorcycle can be considered as a rigid body 
connected to the front and rear wheels with spring-
damper modules. The rigid motorcycle body, compo-
sed of chassis, engine, steering head and rider, consti-
tutes the sprung mass. The wheels and masses atta-
ched to them constitute the unsprung masses. A mo-
torcycle suspension serves the following main purpo-
ses: 

 provides comfort to the rider by keeping him 
comfortably isolated from the vibrations ge-
nerated by the interaction of the wheels with 
the uneven road, 

 ensures wheel grip on uneven road in order to 
transmit the required driving, braking and 
also lateral forces. 

 
The degree of required comfort depends on the 

use of the motorcycle. Comfort of racing motorcycles 
is less important than the motorcycle᾿s capability of 
keeping the wheels in the sufficient contact with the 
road. Touring motorcycles are characterized by higher 
requirements of comfort. In off-road motorcycles the 
suspension serves to isolate the sprung mass from im-
pacts generated by jumps. Suspensions in these mo-
torcycles have greater wheel travel than in touring mo-
torcycles.   

A grey-box model of a motorcycle mono-tube 

shock absorber is proposed in [1]. It consists of a non-
linear parametric model and a black-box neural-
network-based model. The shock absorber model is 
experimentally validated. In [2] simulation and experi-
mental investigation of motorcycle dynamic characte-
ristics for displacement-sensitive shock absorber is 
presented. Dynamics behaviours of motorcycles in 
turns is studied in [3] and [4]. Sharma and Limbeer in 
[5] and [6] describe a design methodology for the su-
spension of a novel aerodynamically efficient mo-
torcycle. Optimization of passive vehicle suspensions 
for improving the ride comfort of a motorcycle driver 
is investigated in [7]. The paper [8] deals with mo-
delling, dynamic analysis and optimization of stiffness 
and damping parameters of the main suspension of 
the Škoda 21Tr trolleybus. In [9] it is shown how the 
kinematic excitation caused by uneven roads together 
with the design parameters of a vehicle suspension 
(stiffnesses of the suspension springs, damping coeffi-
cients and tire stiffnesses) affect the comfort of the 
driver and passengers, safety of the ride and relative 
displacements between the sprung and unsprung mas-
ses. In [10] modelling and optimization of a passive 
seat suspension with a vibration absorber is investiga-
ted. 

 Mechanical and Mathematical Model  

The motorcycle᾿s mechanical model, considered as 
a viscoelastically suspended rigid body [11], [12]  con-
sists of the motorcycle rigid body (sprung mass) 1, the 
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front (2) and rare (3) wheels (unsprung masses) and 
the front and rare spring-damper modules (4, 5) 
between the sprung and unsprung masses, Fig. 1. 

The motorcycle motion can be described by four 
independent coordinates 1,z 2 ,z 3,z 3,  Fig. 2, where 

1z and 2z are the vertical displacements of the front 
and rare unsprung masses (the equivalent masses at 

the center of the wheels), 3z is the vertical displace-

ment of the sprung mass centroid 3T  and 3  defines 
the pitching angular displacement of the sprung mass. 

The equations of motion of the motorcycle can be 
described by the following set of ordinary differential 
equations

 13 3 1 3 3 1 11 1 1, 1 1, 1 3( ) ( ) ( ) 0,           eq eqm z b z l z k z l z k z u   (1) 

 3 3 2 3 3 2 2 22 2, 2, 42 2 2( ) ( ) ( ) 0,           eq eqm z b z l z k z l z k z u  (2) 

 3 3 1 3 3 2 3 3 1 3 3 23 1, 1 2, 1, 1 2,3 2 2( ) ( ) ( ) ( ) 0,eq eq eq eqm z b z l z b z l z k z l z k z l z                     (3) 

 3 3 1 3 3 2 3 3 1 3 3 23 3 1, 1 1 2, 2 2 1, 1 1 2, 2 2( ) ( ) ( ) ( ) 0,eq eq eq eqlI b z l z b l z l z k l z l z k l z l z                      (4) 

where the coordinates 1u and 2u describe the 
uneven road profile (kinematic excitation), Fig. 2. 

 

Fig. 1 Motorcycle Components 

 
Fig. 2 Mechanical Model of the Motorcycle 

2.1 Equivalent Stiffness and Damping Coefficients - 
Front Suspension 

The potential energy of the original tilted spring 1k
, Fig. 3, can be expressed by the approximate equation

    2 2 2
3 1 3 1 1 11, 1 1 3 1 3 1 1

1 1
cos

2 2
cos cosorV k l zk z l z z     

         (5) 

and the potential energy of the equivalent spring 

1,e qk  is 

  2

1, 1, 3 1 3 1
2

1
.eq eqV k z l z    (6) 

Equality of the potential energy 1,orV  and 1,eqV  le-

ads to the dependence between the stiffness coeffi-
cient 

1,e qk  of the equivalent spring and the stiffness 

coefficient of the original spring 1k  

 
2

1, 1 1.coseq kk   (7) 

Using the dissipative function it is possible to de-
rive analogical equation for the damping coefficient 

 
2

1, 1 1.coseqb b   (8) 

 
Fig. 3 Determining the Equivalent Stiffness and Damping 

Coefficients – the Front Suspension 
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2.2 Equivalent Stiffness and Damping Coefficients - 
Rare Ssuspension 

The potential energy of the original tilted spring 

2k , Fig. 4, can be expressed by the approximate equa-
tion

  2 2

2 2 2
3 3 22, 2 2 3 2 3 2.

1 1
cos cos cos

2 2orV k z l x k z l x        
   

       (9) 

The potential energy of the vertical spring 2,eqk  is 

 2

2
.3 32, 2,

1
2eq eqV k z l x 

 
 

    (10) 

Equality of 2,orV and 2,eqV  gives 

 2
2, 2 2.coseqk k   (11) 

Using dissipative function we get 

 

Fig. 4 Determining the Equivalent Stiffness and Damping 
Coefficients of the Rare Suspension, part A 

 2
2, 2 2.coseqb b   (12) 

Now the vertical spring-damper module ( ,2,eqk

2,eqb ) will be replaced by the spring-damper module (

,2,eqk 2,eqb ) acting on the mass 2,m  Fig. 5. 

For the potential energy in the spring 2,eqk we can 

write, Fig. 5 

 2
,2, 2,

2

1
or eqV k x  (13) 

where 

 
1

.2L

L
x z  (14) 

Substituting equation (14) into equation (13) we get 

 
2

12
2, 2, 2

1
.

2or eq

L
V k z

L


 
 
 

  (15) 

 

Fig. 5 Determining the Equivalent Stiffness and Damping 
Coefficients of the Rare Suspension, part B 

 
For the potential energy of the spring 

2 ,eqk of the 

equivalent case, Fig. 5, the following equation holds 

 2
2, 2, 2.

1
2eq eqV k z  (16) 

Equality of equations (16) and (15) gives 

 

2
1

2, 2, .eq eq

L

L
k k

 
   

 
 (17) 

Substituting 2,eqk , equation (11), into equation 

(17) gives 

 

2
1 2

2, 2 2c .oseq

L
k

L
k 

 
   

 
 (18) 

Using dissipative function we get 

 
2

1 2
2, 2 2cos .eq

L
b b

L


 
 
 

 (19) 

 Deterministic and Stochastic Road Profi-
les 

The most important source of excitation is caused 
by the road unevenness. It can be divided into two ba-
sic types - deterministic and stochastic ones, as 
described e.g. in [13].  

A suitable deterministic non-normalized road 
unevenness is of the so-called „hat“ shape, which to 
some extent respect the actual shape of the tyre. It su-
its to the point road-tyre contact modelling. Mathema-
tical model of the bump, depending on the longitudi-
nal coordinate x , is described by equation 
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    2
1 cos for 0 , otherwise

2
0,mh

x d u x
d

u x x
      

 
 (20) 

where is: R -  radius of the circumscribed circle, 
Fig. 6, d - the length of the bump, mh - the height of 

the bump. In Matlab simulation [4], the time depen-
dence of the instantaneous bump height will be used  

    2
1 cos for 0 , otherwise

2
0,mh

u t t t T u t
T

      
 

 (21) 

 

Fig. 6 Deterministic „hat“ shaped bump 
 
where ,/T d v ,/t x v v  is the motorcycle 

speed and T is the bump transit time. 
Modelling of the stochastic road is based on the 

idea that each stochastic stationary process can be re-
presented by the sum of cosine functions. The theory 
of the method [13] was developed in 1971 by 
Shinozuka. 

 Results of Simulations 

Parameters of the motorcycle mechanical model 

are: 1 15 kg,m  2 18 kg,m  3 194 kg,m   
2

3 38 kg m ,I   1 15000 N/m,k   2 24000 N/m,k   
3 180000 N/m,k   4 180000 N/m,k   

1 710 N s/m ,b    
2 1171 N s/m ,b    1 0.64 m,l 

2 0.7 m,l  1 2 7 ,   0.6 m,H  0.6 m.L   For the 
„hat“ shaped bump the following prameters were 

used: 2.68 m,d  0.06 m,mh  11 m/s.v   When dri-
ving on a stochastically uneven road the parameters as 
follows were used:   6 3

0 2 2 .1 0 muS    (power 

spectral density of an asphalt-concrete road of average 

quality), 20 m/s.v   
In Tab. 1 root mean square (rms) values of the mo-

torcycle body centroid acceleration and displacement 
and maximum displacement amplitude for combinati-
ons of different values of 2 parameters 2 and 1L  for 
the ride over the „hat“ shaped bump are shown. 

Tab. 2 shows the rms values of the motorcycle 
body centroid acceleration and displacement for com-
binations of different values of the same parameters 

2 and 1L as in the previous case, for the ride along a 
stochastically uneven road. 

Tab. 1 The rms Values of the Motorcycle Body Centroid Ac-
celeration, Displacement and Maximum Displacement Ampli-
tude - the Ride Over the „Hat“ Shaped Bump 

2  
 
 1L

[m] 
3 ,e fz

[m/s2] 
3 ,e fz  

[m] 
3,m axz

[m] 
0 0.2 0.02615 0.00036 0.025 
20 0.2 0.02646 0.00035 0.025 
40 0.2 0.02767 0.00035 0.023 
0 0.4 0.03754 0.00039 0.040 
20 0.4 0.03504 0.00039 0.039 
40 0.4 0.02856 0.00038 0.038 
0 0.6 0.05412 0.00039 0.048 
20 0.6 0.05176 0.00039 0.047 
40 0.6 0.04340 0.00039 0.043 

Tab. 2 The rms Values of the Motorcycle Body Centroid Ac-
celeration and Displacement - the Ride Along a Stochastically 
Uneven Road 

2  
 


1L  [m] 3,rmsz  [m/s2] 3,rmsz [m]

0 0.2 0.04625 0.00059 
20 0.2 0.04598 0.00060 
40 0.2 0.04511 0.00063 
0 0.4 0.05631 0.00056 
20 0.4 0.05459 0.00056 
40 0.4 0.05022 0.00057 
0 0.6 0.07208 0.00055 
20 0.6 0.06918 0.00055 
40 0.6 0.06084 0.00056 

 
Graph 1 shows the dependence of the centroid 3T

vertical displacement 3z on time for the ride over the 
„hat“ shaped bump for two different cases described 
in the graph. 

The maximum improvement in the rms value of 
the motorcycle body centroid acceleration is 51.7 % 
for the deterministic „hat“ shaped bump and 37.4 % 
for the stochastically uneven road. The rms value of 
the body centroid displacement remains practically 
constant. 

 Conclusions 

The results presented in the paper show that in 
both ride over a „hat“ shaped bump and along a sto-
chastically uneven road significant reduction of the 
rms value of the motorcycle body centroid can be 
achieved by placing the lower end point of the spring-
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damper module closer to the beginning of the swin-
ging arm. Significant reduction of the value can be also 
achieved by increasing deviation (tilt) of the spring-
damper module from the vertical, but this reduction is 
decreasing with placing the lower end point of the rare 
spring-damper module closer to the beginning of the 
swinging arm. The rms value of the body centroid dis-
placement remains practically constant. The above 
conclusions are important for improving comfort of 
the motorcycle rider, because the centroid acceleration 
is a decisive factor determining the motorcycle com-
fort level. 

 

Graph 1 Dependence of 3z on Time - „Hat“ Shaped Bump 
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