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Surface roughness is one of the most significant evaluation factor in metal machining operations. Despite the small 

descriptiveness is usually quantified as the arithmetical mean roughness Ra especially in the automotive industry. 

In order to maintain the desired surface roughness, the appropriate setting of machining parameters is important 

to be set before the actual cutting process. The objective of this research is to analyse the effect of machining 

parameters on surface roughness of stainless steel X153CrMoV12-1 in CNC milling of slope surfaces with sintered 

carbide tool. The data were processed using multiparametric statistical methods to find optimal results. Linear 

regression models and probability dendrograms of similarities were determined for cutting conditions, cutting 

tools and slope of machined surfaces. 
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 Introduction  

Injection molds, die-casting and die-forging molds to-
gether with stamping tools are used in mass production of 
identical parts in huge quantity often for the automotive 
and consumer industry. The manufacture requires precise 
and accurate production process since the imperfections 
are replicated into the final product. For this reason, the 
production process is analysed during manufacture, com-
puter numerical controlled (CNC) machines are em-
ployed to ensure a high repeatability and predictability of 
production. Resulting mold or tool surface quality is di-
rectly linked to finish machining operations whereat ball 
end milling methods on CNC machine tools are applied. 
The mill tool with ball end makes sense to use mainly for 
milling of complex inclined surfaces. That usage will pre-
vent known phenomenon where the resultant speed near 
the axis of the tool is very close to zero and at such a 
place, the material is not machined. 

Surface roughness is one of the parameters with great 
importance considered for the functional behaviour of the 
mold or tool, moreover is widely used as a description of 
surface quality and as a technical requirement in most 
cases [1, 2] of mechanical engineering. In general, milling 
is a highly complex process influenced by a large number 
of factors among interacting [3-9]. Accordingly, the re-
sulting surface roughness and its formation is affected by 
cutting conditions, cutting tool properties, workpiece 
properties, cutting phenomena [10, 11] and part program 
accuracy [12]. 

Prediction of surface roughness includes various ap-
proaches from simple kinematic models [13], over com-
plex methodology evaluation with more input parameters 
[14-24] using artificial neural networks (ANN), response 
surface methodology (RSM), artificial intelligence (AI), 
multiple regression or fuzzy modelling. Despite a number 
of methods, surface roughness models describe the be-
haviour with limiting boundary conditions for the specific 
case only. Recalculation according to the desired surface 
roughness can give machining conditions outside the 

working range of the machine tool or on the contrary re-
quire settings of machining conditions with high sensitiv-
ity. 

In this research is analysed the probability of Ra pa-
rameter similarities of machining conditions, especially 
feed, if can be set at a certain interval without resulting 
surface roughness was significantly changed. This would 
allow the less robust control systems to be used. Moreo-
ver, article focuses on the question of whether it is worth 
to use cutting tools with different geometries for areas 
with a distinctive inclination. Solution includes the appli-
cation of multiparametric statistical methods and determi-
nation of linear regression models. 

 Experimental details 

The machining parameters selected for this experi-
ment were given as recommended by the tools manufac-
turer for the workpiece material. Input values of the ma-
chining were radial depth of cut ae, feed fz, surface incli-
nation angle α and tool rake angle γ while the spindle 
speed remains constant at 5308 RPM (in Tab. 1). Work-
piece material was stainless steel X153CrMoV12-1 with 
63 of Rockwell Hardness, generally used in molds and 
tools manufacturing. 

The milling operations were performed on three axes 
vertical CNC milling centre Mikron HSM 800. For the 
purpose of the experiment were selected ball end mill 
tools from sintered carbide with PVD coating. Whereas 
each of tool geometry parameters were unchanged, only 
tool rake angle (Fig. 1 right) was different, hereinafter re-
ferred to as positive geometry was the tool with 12°, while 
the tool with negative geometry was -4° of rake angle. 
Generally, positive geometry is suitable for machining of 
steel and cast iron parts prone to vibration, but also for 
workpieces of aluminium alloys and super alloys that eas-
ily form build-up edge. Negative geometry is suitable for 
milling steel, cast iron and hard to machine materials that 
ensures prolonged tool life nevertheless require higher 
cutting power [25, 26]. As the tool clamping unit was 
used the shrink fit holder HSK 50E on a modular system 
Easyshrink 20.  The overhang of the tool in the tool holder 



June 2018, Vol. 18, No. 3 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

 

364  indexed on: http://www.scopus.com  

was 50 mm. 

 

Fig. 1 Scheme of machining process (left) with positive 
and negative tool geometry of tool rake angle (right) 

 
Powermill software was used to create part program 

for CNC milling within the ±0.01 mm tolerance, using 
Constant Z strategy. The feed direction was parallel to y 
axis of the machine tool (see Fig. 1 left) and climb cutting 
strategy was chosen for the better surface roughness. The 

part program was checked before manufacturing in inter-
nal verification by Powermill software and potential er-
rors and collisions were debugged. The oil mist Unicut-
EP-A4 was used for cooling in the rate of 1:500000 to air 
during milling. A surface of the workpiece in the range of 
0° - 30° is referred to as shallow, and therefore the angle 
of inclination α = 15° are hence denoted. Conversely, in 
areas ranging from 30° - 90° have been described as steep, 
and we do so for the workpiece surface inclination α = 
75°. 

Measurements were carried out using surface rough-
ness tester Mitutoy SJ-301 according to ISO standards. 
Surface roughness was measured in the direction perpen-
dicular to the feed repeatedly 30 times on machined sur-
face. For this reason, was necessary to applicate in the pa-
per multiparametric statistical methods to find optimal re-
sult. In the paper was used finding and testing linear re-
gression models and dendrogram graphs to demonstrate 
probability of similarity Ra parameter for tool with posi-
tive and negative geometry.

Tab. 1 Machining conditions 
Tool geometry Negative Positive 
Spindle speed (n) 5308 RPM 5308 RPM 
Radial depth of cut (ae) 0.16 - 0.25 - 0.32 - 0.40 - 0.60 mm 0.16 – 0.25 – 0.32 – 0.40 – 0.60 mm 
Axial depth of cut (ap) 0.5 mm 0.5 mm 
Feed per tooth (fz) 0.1– 0.12– 0.135– 0.15– 0.17 mm 0.1– 0.12– 0.135– 0.15– 0.17 mm 
Surface inclination angle (α) 15° and 75° 15° and 75° 
Tool rake angle (γ) -4° 12°  
Tool diameter (d) 12 ± 0.01 mm 12 ± 0.01 mm 

 Results and discussion 

The following are the results for milling with the ra-
dial depth of cut ae = 0.40 mm. Other measurements were 
similar behaviour, and thus omitted. As described below 
it is large problem to specify which of the tools is better 
to use for shallow surfaces or for steep surfaces. 

3.1 Shallow surfaces 

In the diagram (Fig. 2) is implied cause of the prob-
lem. E.g. at feed fz = 0.17 mm for negative geometry and 
fz = 0.1 mm positive geometry cannot be statistically by 
using appropriate tests rejected the equality of mean val-
ues expressed by the arithmetic means.  

 
Fig. 2 Surface roughness of shallow surfaces for posi-

tive and negative tool geometry 

 
Fig. 3 Data similarity analysis 

 
This problem then led to the idea that the tool geome-

try (positive, negative) during milling shallow surfaces do 
not matter, which as discussed below, is incorrect hypoth-
esis. The dendrogram in the Fig. 3 marked a similarity of 
results for both the positive and negative geometry. Men-
tioned fz = 0.17 mm for negative geometry and fz = 0.1 
mm for positive geometry is indicated by a frame. From 
dendrogram follows that the similarity of Ra values for 
both positive and negative geometry at different values of 
fz is high (i. e., approaching a value of 80 percent). This 
means that in general parameter Ra and feed fz is not a 
prominent difference between whether the tool with pos-
itive or negative geometry was used.  

It can be concluded that the measured values of Ra 
parameter for geometry of both positive and negative for 
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the above-defined values fz are derived from a normal dis-
tribution, contain no misleading outlier Ra values and do 
not show the autocorrelation of up to 4th order. 

As the next step data transformation is performed, 
which should result in the stabilization of the possible 
variance of Ra values, respectively to his symmetrisation. 
From the graph of the logarithm of the credibility function 
was seen that the interval of the parameter λ, which was 
designed for the 1-α = 0.95 includes the value 1, which 
implies that the Box Cox transformation is not significant 
as well as transformation. 

Tab. 2 Mean values of Ra 

Conditions:  
Negative, 
fz = 0.17 mm 

Positive,  
fz = 0.1 mm 

Mean 0.9651 0.9594 
Median 0.9670 0.9565 
Retransformed mean 
by Box Cox transfor-
mation 

0.9629 0.9571 

Retransformed mean 
by power transfor-
mation 

0.9672 0.9570 

Tab. 3 Statistical characteristics of regresion 

Tool geometry: Negative Positive 
Multiple correlation coeffi-
cient: 

0.9888 0.9432 

Coefficient of determina-
tion: 

0.9777 0.8896 

The predicted correlation co-
efficient: 

0.9037 0.3115 

Root mean square error of 
prediction: 

0.0001 0.0006 

Akaike information crite-
rion: 

-44.0828 -40.2987 

The residual sum of squares: 0.0003 0.0007 

Mean of absolute residues: 0.0063 0.0113 

Residual standard error: 0.0105 0.0154 

Residual variance: 0.0001 0.0002 

Skewness residues: 0.4125 0.0700 

Kurtosis residues: 2.3703 1.2841 

 
From the Tab. 2 is apparent that mean values of Ra 

start to diverge on the third decimal place; mean of Ra 
will be used as the characteristic estimation value. 

Next, was used theory of hypothesis, namely F-test 
and two tail t-test for evaluating the estimation of arith-
metic averages of Ra, obtained by the tool with positive 
and negative geometry under former mentioned fz values. 

Hypothesis for F-test was 

Ho: 
2

1.0
2

17.0 mmfzPositiveRammfzNegativeRa == =σσ  

Ha: NON 
where 95.01 =−α  
Based on the above values we can conclude that Ho 

hypothesis of equality of Ra means for positive and neg-
ative geometry of the specific values fz cannot be rejected. 
Practically, this means that Ra values for positive and 

negative tool geometry for given fz do not detect the in-
fluence of geometry and feed. It could therefore lead to 
the consideration that when milling shallow surfaces is 
not important the tool geometry. In this manner was ex-
amined more similarities with a comparable result. For 
this reason, we proceed via regression analysis and find-
ing the estimates of linear regression parameters. 

As is mentioned in the Tab. 3, it is possible to say that 
the models for positive and negative geometry are signif-
icant and correct, residues indicated homoscedasticity 
and are normally distributed, and autocorrelation is insig-
nificant. 

3.2 Steep surfaces 

In the steep surfaces is possible to say that is not dif-
ficult to find differences between tool with positive and 
negative geometry. There is a great difference between 
Ra parameter as is shown in the box plot diagram and 
dendrogram too (see Fig. 4-5). But it is necessary to pro-
pose the regression model and make its testing, as is men-
tioned below.  

It is possible to say that multiple correlation coeffi-
cient, coefficient of determination and the predicted cor-
relation coefficient are high and skewness and kurtosis of 
residues are close to normal distribution. From regression 
triplet in Figure 6 and for equation for (3) a (4) is possible 
to say that model of regression is significant, correct, re-
siduals indicate homoscedasticity and there is not auto-
correlation in the data. 

 
Fig. 4 Surface roughness of steep slope surfaces for pos-

itive and negative tool geometry  

 
Fig. 5 Data similarity analysis of steep slope surfaces 



June 2018, Vol. 18, No. 3 MANUFACTURING TECHNOLOGY ISSN 1213–2489 

 

366  indexed on: http://www.scopus.com  

 

Fig. 6 Linear regression for negative tool geometry 

 

Fig. 7 Linear regression for positive tool geometry 

Tab. 4 Statistical characteristics of regresion 

Tool geometry: Negative Positive 
Multiple correlation coeffi-
cient: 

0.9742 0.9699 

Coefficient of determina-
tion: 

0.9491 0.9407 

The predicted correlation co-
efficient: 

0.7446 0.6580 

Root mean square error of 
prediction: 

0.0006 0.0008 

Akaike information crite-
rion: 

-37.6828 -37.1635 

The residual sum of squares: 0.0012 0.0013 

Mean of absolute residues: 0.0133 0.0153 

Residual standard error: 0.0200 0.0210 

Residual variance: 0.0004 0.0004 

Skewness residues: 0.6906 0.1022 

Kurtosis residues: 2.2222 1.4030 

3.3 Chow test of shallow and steep surfaces 

In case of shallow surfaces should be considered re-
gression equations as follows: 
 

zgeometrynegative fRa ×+= 244.25839.0  [μm] (1) 

 
zgeometrypositive fRa ×+= 404.18008.0   [μm] (2) 

Considering zero and alternative hypothesis and 
Chow test we have obtained  

Ho: 
geometrypositiveRageometrynegativeRa ββ =  

Ha:
geometrypositiveRageometrynegativeRa ββ ≠  

on the confidential level 1 – α = 0.95. 
Criterion of the test for case of homoscedasticity and 

number of freedom: 
RSC negative = 333.08E-5 
RSC positive = 709.97E-5 
RSC positive + negative = 2884.30E-5 
Fch = 80.02 
F0.95 (m=2, n-2*m=6) = 5.14 
 
It is possible say that F0.95 = 5.14 < Fch = 80.02 and 

then it is possible to reject zero hypothesis that regression 
equations (1) and (2) are equal and differences Ra on the 
shallow surface area are randomize only. Practically is 
possible to say that there is statistically significant differ-
ence between tools with positive and negative geometry 
for machining shallow surface. 

 

Fig. 8 Surface roughness correlations for shallow sur-
face  

 

Fig. 9 Surface roughness correlations for steep surfaces  
 
In case of steep surfaces should be considered regres-

sion equations as follows: 
 

zgeometrynegative fRa ×+= 776.2035.1  [μm]  (3) 

 
zgeometrypositive fRa ×+= 698.25438.0  [μm]  (4) 

Criterion of the test for case of homoscedasticity: 
RSC negative = 119.80E-5 
RSC positive = 132.91E-5 
RSC positive + negative = 63176.13E-5 
Fchtest =169.65 
F0.95 (m=2,n-2*m=6) = 5.14 
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It is possible find that F0.95 = 5.14 < Fchtest = 169.65 
and then it is possible to reject zero hypothesis that re-
gression equations (3) and (4) are equal and differences 
Ra on steep surfaces area are randomize only. Practically 
is possible to say that there is statistically significant dif-
ference between tools with positive and negative geome-
try for machining shallow surface. 

 Conclusion 

The article describes data evaluation for case of ma-
chining steep and shallow surfaces, using linear regres-
sion models, their evidence and dendrograms. We man-
aged to demonstrate that the data characterizing Ra pa-
rameter in case of shallow surfaces are statistically signif-
icantly different for positive and negative tool geometry 
which, for example, by a dendrogram or relevant T-test 
could not be confirmed. The linear regression models 
were tested using regression triplets followed by Chow’s 
method and shown at 95% confidence level that the tool 
geometry is statistically significant to the determination 
of Ra for shallow surfaces. 

In the case of steep surfaces dendrogram evaluation 
clearly demonstrated the dissimilarity in terms of Ra for 
different cutting conditions and a similar result are ob-
tained even when applying regression triplet and Chow’s 
method. 
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