Improving the Tribological and Mechanical Properties of an Aluminium Alloy by Deposition of AlSiN and AlCrSiN Coatings

Totka Bakalova1, Nikolay Petkov2, Hristo Bahchedzhiev2, Pavel Kejzlar1, Petr Louda3, Marián Durák3

1Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic. E-mail: totka.bakalova@tul.cz, pavel.kejzlar@tul.cz
2Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61, St. Peterburg Blvd. 4000 Plovdiv, Bulgaria. E-mail: petkovnik@gmail.com, hristo_bah@abv.bg
3Faculty of Mechanical Engineering, Department of Material Science, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic. E-mail: petr.louda@tul.cz, marian.durak@tul.cz

This paper presents an improvement to the mechanical and tribological properties of aluminium alloys. AlSiN and AlCrSiN coatings (with different Cr content) were deposited on substrates of Al-Cu-Mg alloy by the cathodic arc evaporation method at 400°C. Surface morphology and chemical composition were estimated by a scanning electron microscope equipped with an energy dispersive spectrometer and mechanical profilometer. The increasing chromium content in the coating led to an increase in the coating hardness. The tribological behaviour of the coated and uncoated Al-Cu-Mg alloy samples was examined using the “Ball-on-Disk” method (ASTM G99-95) at a load of 10N using Al2O3 ball as a counterpart.

Keywords: AlSiN thin films; Cathodic arc deposition; Aluminium substrate, Coefficient of friction

Acknowledgement

This paper was supported by the project LO1201, through the financial support of the Ministry of Education, Youth and Sports in the framework of the targeted support of the “National Programme for Sustainability I” and the OPR&D project “Centre for Nanomaterials, Advanced Technologies and Innovation” registration number CZ.1.05/2.1.00/01.0005. We would also like to thank Craig Hampson for his help with English language correction.

References