Optimization Machining of Titanium Alloy Ti-6Al-4V by WEDM with Emphasis on the Quality of the Machined Surface

Katerina Mouralova, Jiri Kovar, Zdenek Karpisek, Pavel Kousa
Faculty of Mechanical Engineering, Brno University of Technology. Technicka 2896/2, 616 69 Brno. Czech Republic.
E-mail: mouralova@fme.vutbr.cz, kovar@fme.vutbr.cz, karpisek@fme.vutbr.cz, pavelkousal100@gmail.com

The objective of this work is to assess cutting speed during the wire electrical discharge machining (WEDM) depending on the machine parameters setting (gap voltage, pulse on time, pulse off time, wire speed and discharge current) and follow-up assessment of the surface quality achieved. In order to achieve efficient machining the maximum cutting speed is required, however maintaining of the required quality and functional characteristics of the machined surface must be considered. Surface morphology during the wire electrical discharge machining is formed by a high number of craters, of which depth has direct effect on area parameters and profile parameters of the surface quality. These parameters were evaluated using Contactless 3D profile-meter based on the principle of coherence correlation inter-ferometry IFM G4 from the Alicona producer.

Keywords: WEDM, Electrical Discharge Machining, Design of Experiment, surface roughness, titanium alloy

Acknowledgement
This work has been supported by Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic (Grant No. FSI-S-14-2401).
The paper is a part of research project of the ACADEMY STING named IGA_AS_03 “Support of Business Management”.
This research work was supported by the BUT, Faculty of Mechanical Engineering, Brno, Specific research 2016, with the grant “Research of modern production technologies for specific applications”, FSI-S-16-3717 and technical support of Intemac Solutions, Ltd., Kurim.

References

indexed on: http://www.scopus.com


