Chip Formation Comparison- Merchant’s Model vs. Model with Rounded Cutting Edge

Katarína Monková1,3, Jaromír Markovič2, Peter Pavol Monka1,3, Jan Řehoř 3,4, Peter Pastucha1

1Technical University of Košice, Faculty of Manufacturing Technologies with seat in Prešov, Bayerova 1, 080 01 Prešov, Slovakia. E-mail: peter.monka@tuke.sk, katarina.monkova@tuke.sk, ppastucha@gmail.com
2Slovak Metrological Society, Hviezdoslavova 1124/31, 97401 Banská Bystrica, Slovakia. E-mail: slm@slm.sk
3Regional Technological Institute, University of West Bohemia, Univerzitní 8, 306 14 Pilsen, Czech Republic. E-mail: monka@rti.zcu.cz, rehor4@rti.zcu.cz
4Department of Machining Technology, University of West Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic. E-mail: rehor4@kto.zcu.cz

Merchant’s model of chips formation considers an "ideal" (sharp) cutting edge. However, nowadays many manufacturers of cutting tools modify the tool geometry with the goal to increase the tool life and to improve the surface quality. The processes, at which the modified tools are used, go along with chip formation and physical phenomena that differ from Merchant's model.

The article deals with the simulation of chip formation at various ratios of rounded cutting edge and cutting thickness. Aim of the research has been focused on the interpretation of new knowledge from the cutting theory. Authors have tried to understand the theory of cutting process by means of simulation and provide the recommendations for practical usage. They explain the differences between the Merchant's model with a sharp edge and a model with a rounded cutting edge. The contribution describes changes and manifestations of physical phenomena result from given conditions. There were also simulated dependencies of the tool load on the radius of cutting edge in the article. Achieved results will enable not only better integration of cutting tools into the manufacturing, but they also allow to increase the machining efficiency.

Keywords: Cutting Edge, Merchant’S Model, Simulation, Chip Formation

Acknowledgement

The paper was published thanks to international cooperation of authors within the projects/grants VEGA 1/0614/15│KEGA 087TUKE-4/2015│KEGA 013TUKE-4/2014 with direct support of Ministry of Education of the Slovak Republic and project CZ.1.05/2.1.00/03.0093 - Regional Technological Institute covered by the European Regional Development Fund and the state budget of the Czech Republic. The authors would like to express their gratitude to the both above mentioned institution for financial support of the research activities.

References


Paper number: M2016244
Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

indexed on: http://www.scopus.com