Critical Parameters of Metal Laser Sintering with its Impact on Geometrical Accuracy of a Component

Ivana Zetková, Miroslav Zetek, Milan Daňa, Jan Kutlwašer
Faculty of Mechanical Engineering, Západočeská univerzita v Plzni. Univerzitní 8, 306 14 Plzeň. Czech Republic. E-mail: zetkova@rti.zcu.cz, mzetek@rti.zcu.cz, danam@rti.zcu.cz

3D printing of metallic powders is a relatively new but increasingly used technology in a wide range of sectors. Design engineers are responding flexibly to new opportunities for production and components for 3D printing and are designing with respect to the advantages and limitations of this technology. Through the additive method of production, we can produce very specific components with complex shapes, both internal and external, which cannot be produced by conventional methods, thereby opening up new possibilities both in functional components and in their design.

This paper deals with the influence of critical parameters of metal laser sintering of metallic powders, particularly tool steel, on the geometrical accuracy of a component. Based on selected critical parameters, a component was designed that was printed on different devices and subsequently evaluated in terms of accuracy, surface quality and material properties.

Keywords: Metal laser sintering; critical parameters; geometrical accuracy, DLMS, tool steel

Acknowledgement

The present contribution has been prepared under project LO1502 ‘Development of the Regional Technological Institute’ under the auspices of the National Sustainability Programme I of the Ministry of Education of the Czech Republic aimed to support research, experimental development and innovation.

References


Copyright © 2016. Published by Manufacturing Technology. All rights reserved.

indexed on: http://www.scopus.com