Microscopy of Material Surfaces for Tissue Engineering

Václav Švorčík1, Petr Slepčík1, Jakub Siegel1, Oleksiy Lyutakov1, Nikola Slepčíková Kasálková1, Kateřina Kolářová1, Alena Rezníčková1, Zdeňka Kolská1, Zdenka Kolska1

1Department of Solid State Engineering, University of Chemistry and Technology, Technická 3, 16628 Prague, Czech Republic. E-mail: vaclav.svorcik@vscht.cz; petr.slepicka@vscht.cz; lyutakoo@vscht.cz; nikola.kasalkova@vscht.cz; vaclav.svorcik@vscht.cz; katerina.kolarova@vscht.cz; alena.reznickova@vscht.cz

2Faculty and Science, J. E. Purkyne University in Usti nad Labem, 400 01 Usti nad Labem. Czech Republic. E-mail: zdenka.kolska@ujep.cz

The field of material surface modification with aim of biomaterials construction involves several approaches based on surface treatments that allow to prepare materials, which support the cell adhesion and proliferation and thus aid and improve the tissue formation. Modified materials have a surface composition and morphology intended to interact with biological systems and cellular functions. Not only surface chemistry has an effect on material biological response, surface structures of different morphology can be constructed to guide a desirable biological outcome. Nano-patterned material surfaces have been tested with aim to determine how surface geometry, physical and chemical properties on a micro- and nano-scale can affect cellular response and influence cell adhesion and proliferation. Surface physico-chemical properties (e.g. chemistry, morphology, wettability, electrical conductivity, optical and mechanical properties) of treated surfaces were determined. The enhancement in cell adhesion and proliferation on modified substrates was studied in vitro. Bactericidal action of noble metal nano-particles (e.g. Au, Ag) on polymers was characterized. The influence of metal nano-particles grafting by using metal nano-particle suspension prepared by "green" methods was determined.

Keywords: Polymer, Surface Treatment, Morphology, Cells, Bacteria, Surface Characterization

Acknowledgement

This work was supported by the GACR under project 13-06609S and by the Ministry of Health of CR under the project 15-33018A. The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.

References


100

indexed on: http://www.scopus.com


