Effect of Microstructure on the Mechanical Properties of Binary Magnesium Alloys Containing Ga, In and Sn

Jiří Kubásek, Dalibor Vojtěch, Drahomír Dvorský
Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic. E-mail: kubasekj@vscht.cz, vojtechd@vscht.cz

In the present work Mg-Ga, Mg-Sn and Mg-In binary alloys with 1 and 3 wt.% Ga, Sn or In were studied in the as-cast state. Selected Mg-3Ga and Mg-3Sn binary alloys were subsequently extruded at 400 °C. Structures of investigated materials were studied using scanning electron microscopy and energy dispersive spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile and compressive testing. All materials were composed of primary magnesium dendrites and contained strong dendritic microsegregation. Both Ga and Sn have strengthening effect on magnesium; the effect of In is negligible. The extruded alloys were characterized by grain size in the range between 10-50 µm. Tensile yield strength and ultimate tensile strength of materials were clearly improved.

Keywords: Magnesium alloys, Casting, Thermomechanical processing, Electron microscopy, Mechanical characterization

Acknowledgement

Authors wish to thank the Czech Science Foundation (project no. P108/12/G043) and specific university research (MSMT No 20-SV/2016) for the financial support of this research.

References


