Analysis of Selected Aspects of Turned Bearing Rings Regarding Required Workpiece Quality

Josef Sedlak, Pavel Tropp, Josef Chladil, Karel Kouril, Ales Polzer, Karel Osicka
Department of Machining Technology, Institute of Manufacturing Technology, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 616 69, Czech Republic. E-mail: sedlak@fme.vutbr.cz, TroppPavel@seznam.cz, chladil@fme.vutbr.cz, kouril.k@fme.vutbr.cz, polzer@fme.vutbr.cz, osicka@fme.vutbr.cz

An article deals with an analysis of selected aspects of heat-treated bearing rings during machining and comes up with a solution (a machining operation) leading to improving efficiency of a machining process (i.e. an elimination of a generally expensive cutting technology when the same surface integrity is kept) lying in the series of samples that would be tested experimentally under university conditions (a workroom C2 of Department of Machining Technology FSÚ VUT in Brno) using a CNC turning lathe SP 280 SY.

A theoretical part focuses on a characteristics and analysis of a given component including an applied material 100Cr6 from which bearing rings are made. A practical part deals with an analysis and evaluation of a residual tension in a surface layer (Barkhausen noise: BN) using the device Rollscan 350. The article also comes up with a solution of an issue of surface integrity after a turning operation of bearing rings. The surface integrity is analysed with a touch measuring device (the device with an inductive sensor Form Talysurf Intra – Taylor Hobson) and a contactless device Talysurf CCI Life – Taylor Hobson.

The article ends with an analysis and evaluation of assessed aspects applied during turning of heat-treated bearing rings regarding the required workpiece quality.

Keywords: Bearing Rings, 100Cr6, Turning Operation, Workpiece Quality, Surface Integrity, Residual Tension

Acknowledgement

The research was supported and co-financed from a project of Ministry of Industry and Trade of the Czech Republic from a grant FR-TI4/247 Research and Development of Construction and Technology of Energetically Efficient Rolled Bearings with Brass Cage.

This expert article called “Production of Axle Bearing“ was made as a part of a forthcoming international project of a company ZKL, a.s. which will be launched to the program HORIZONT 2020, more precisely to a tool “Fast Track to Innovation“. Three partners participate this program: ZKL, a.s. – CZ, PROFIROLL TECHNOLOGIES, GmbH – SRN, CAF – ESP. The project preparation was realized with a support of the Branch Contact Organization for Research of New Technologies abbreviated as “OKO – NovaTech” financed from the state budget via a program EUPRO II of the Ministry of Education, Youth and Sports.

References


Copyright © 2016. Published by Manufacturing Technology. All rights reserved.