Comparison of ABI Technique and Standard Methods in Measuring Mechanical Properties of Aluminium Al-aloys

Maxim Puchnin¹, Oleksandr Trudonoshyn², Olena Prach³, Františka Pešlová¹
¹Czech Technical University in Prague, Karlovo náměstí 13, 12135, Prague 2, Czech Republic, E-mail: maxim.puchnin@fs.cvut.cz
²Friedrich-Alexander University of Erlangen-Nuernberg, Metals Science and Technology, Martensstr. 5, 91058, Erlangen, Germany, E-mail: oleksandr.trudonoshyn@fau.de
³Technische Universität Darmstadt, Karolinenplatz 5, 64289 Darmstadt, Germany, E-mail: prach@phm.tu-darmstadt.de

Mechanical properties and chemical composition of aluminium alloys were investigated by automated ball indentation tests, scanning electron microscopy and energy dispersive X-ray analysis.

In this work, Automated Ball Indentation (ABI) technique was compared with the standard mechanical tests. ABI method is based on the load controlled multiple indentations into a polished surface by a spherical indenter. The indentation depth is progressively increased to a maximum user specified limit with intermediate partial unloading. This technique allows to measure the yield strength, stress-strain curve, strength coefficient and strain hardening exponent.

For all these test materials and conditions, the ABI derived results were in very good agreement with those obtained from conventional standard test methods.

Keywords: Al-alloys, microstructure, mechanical properties, ABI tests

Acknowledgement

The authors gratefully thank the DAAD for their support in research. This work was supported by the Ministry of Education, Youth and Sport of the Czech Republic, program NPU1, project No LO1207 and project "Material research for InovaSEED", reg. No. CZ.1.05/3.1.00/14.0301, which is funded by the European Regional Development Fund through the Operational Programme Research and Development for Innovation”.

References

[8] Patent for utility model № 100261, Russia

indexed on: http://www.scopus.com


