Analysis of Selected Thermodynamic Derivative Properties of Natural Gas Pipeline Flow Model

Ján Rajzinger¹, František Ridzoň¹, Milan Malcho², Jožef Jandačka²
¹Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava. Nám. Slobody 17, 812 31 Bratislava. Slovak Republic. E-mail: jan.rajzinger@stuba.sk.cz, frantisek.rizdon@stuba.sk
²Faculty of Mechanical Engineering, University of Žilina. Univerzitná 1, 010 01 Žilina. Slovak Republic. E-mail: milan.malcho@fstroj.uniza.sk, jozef.jandacka@fstroj.uniza.sk

The thermodynamic derivatives based on fundamentals thermodynamic space and physical parameters of natural gas influences other variables of pipeline systems such as pressure, temperature, velocity, density, gas compressibility, etc. These variables are crucial for gas pipeline system knowledge and its accurate operation. Fundamental parameters are derived such as Joule-Thomson (J-T) coefficient, isothermal throttling coefficient and isentropic coefficient. They influence gas flow when during the expansion of natural gas in the pipeline, the gas cools down due to the J-T effect and due to the interaction between pipeline system and its surroundings to the conditions at which gas is saturated by water vapour (dew point), and gas is not able to keep excess humidity and it’s condensation and gas hydrate formation will occur. The article deals with analyses of selected thermodynamic derivatives in the range of chosen temperatures and pressures and also non-isothermal steady-state flow model for pipeline is presented.

Keywords: gas pipeline, natural gas, thermodynamic properties

Acknowledgement

We would like to thank to: (1) Non-investment fund EkoFond, n. f., partner for Slovak Gas Industry for the financial support of project 563/PG04/2011: Rajzinger, J., Ridzoň, F. et al., “Reduction of energy consumption at gas pipeline” (2) Scientific Grant Agency of the Ministry of Education of Slovak Republic for the financial support of project VEGA 1/0718/15: Malcho, M., Rajzinger, J., Jandačka, J. et al., “Accumulation of high potential energy through the generating process of natural gas and biogas hydrates”.

References