Effects of a Cutting Fluid on Aerosol Size Distribution during Turning

Luboš Kotek¹, Petra Semanová², Erika Sujová², Miroslav Dado², Marián Kučera², Richard Hnilica², Martin Jonák¹
¹Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno Czech Republic E-mail: kotek.l@fme.vutbr.cz, jonak@fme.vutbr.cz
²Faculty of Environmental and Manufacturing Technology, Technical university in Zvolen, Studentska 26, 960 53 Zvolen, Slovak Republic, E-mail: petra.semanova19@gmail.com, erika.sujova@tuzvo.sk, miroslav.dado@tuzvo.sk, kucera@tuzvo.sk, hnilica@tuzvo.sk

Cutting fluids are complex mixtures used to cool, lubricate and remove metal chips from tools and metal parts during grinding, cutting, or boring operations. Utilization of cutting fluids in the technological process of metalworking often generates aerosols which represent a significant hazard to the safety of workers and to the environment. The paper deals with the research of cutting fluid’s impact on aerosol production by expressing particle size distribution. We used a special image analysis algorithm for the data obtained by a high-speed camera to determine the particle size. The procedure of result assessment was created for measuring the size of small droplets and it was implemented in a MATLAB application. Multifactor analysis of variance (ANOVA) and nonparametric analysis of variance were used for statistical result evaluation.

Keywords: Cutting Fluids, Aerosol Particle Size, Image Analysis, High-speed Camera

Acknowledgements

This paper is an output of cooperation between projects VEGA (Scientific Grant Agency of Slovak Republic) Reg. No. 1/0676/14 - and NETME Centre, regional R&D centre built with the financial support from the Operational Programme Research and Development for Innovations within the project NETME Centre (New Technologies for Mechanical Engineering), Reg. No. CZ.1.05/2.1.00/01.0002 and, in the follow-up sustainability stage, supported through NETME CENTRE PLUS (LO1202) by financial means from the Ministry of Education, Youth and Sports under the „National Sustainability Programme I”.

Authors would like to thank to RNDr. Vladimír Vacek, for his suggestions and mentorship of statistical analysis of results proceeding and Mgr. Jaroslava Štefková, PhD. for paper language correction.

References


